\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra rule.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain RULE RewriteRule} <<domain RULE RewriteRule>>= )abbrev domain RULE RewriteRule ++ Rules for the pattern matcher ++ Author: Manuel Bronstein ++ Date Created: 24 Oct 1988 ++ Date Last Updated: 26 October 1993 ++ Keywords: pattern, matching, rule. RewriteRule(Base, R, F): Exports == Implementation where Base : SetCategory R : Join(Ring, PatternMatchable Base, ConvertibleTo Pattern Base) F : Join(FunctionSpace R, PatternMatchable Base, ConvertibleTo Pattern Base) P ==> Pattern Base Exports ==> Join(SetCategory, Eltable(F, F), RetractableTo Equation F) with rule : (F, F) -> $ ++ rule(f, g) creates the rewrite rule: \spad{f == eval(g, g is f)}, ++ with left-hand side f and right-hand side g. rule : (F, F, List Symbol) -> $ ++ rule(f, g, [f1,...,fn]) creates the rewrite rule ++ \spad{f == eval(eval(g, g is f), [f1,...,fn])}, ++ that is a rule with left-hand side f and right-hand side g; ++ The symbols f1,...,fn are the operators that are considered ++ quoted, that is they are not evaluated during any rewrite, ++ but just applied formally to their arguments. suchThat: ($, List Symbol, List F -> Boolean) -> $ ++ suchThat(r, [a1,...,an], f) returns the rewrite rule r with ++ the predicate \spad{f(a1,...,an)} attached to it. pattern : $ -> P ++ pattern(r) returns the pattern corresponding to ++ the left hand side of the rule r. lhs : $ -> F ++ lhs(r) returns the left hand side of the rule r. rhs : $ -> F ++ rhs(r) returns the right hand side of the rule r. elt : ($, F, PositiveInteger) -> F ++ elt(r,f,n) or r(f, n) applies the rule r to f at most n times. quotedOperators: $ -> List Symbol ++ quotedOperators(r) returns the list of operators ++ on the right hand side of r that are considered ++ quoted, that is they are not evaluated during any rewrite, ++ but just applied formally to their arguments. Implementation ==> add import ApplyRules(Base, R, F) import PatternFunctions1(Base, F) import FunctionSpaceAssertions(R, F) Rep := Record(pat: P, lft: F, rgt: F, qot: List Symbol) mkRule : (P, F, F, List Symbol) -> $ transformLhs: P -> Record(plus: F, times: F) bad? : Union(List P, "failed") -> Boolean appear? : (P, List P) -> Boolean opt : F -> P F2Symbol : F -> F pattern x == x.pat lhs x == x.lft rhs x == x.rgt quotedOperators x == x.qot mkRule(pt, p, s, l) == [pt, p, s, l] coerce(eq:Equation F):$ == rule(lhs eq, rhs eq, empty()) rule(l, r) == rule(l, r, empty()) elt(r:$, s:F) == applyRules([r pretend RewriteRule(Base, R, F)], s) suchThat(x, l, f) == mkRule(suchThat(pattern x,l,f), lhs x, rhs x, quotedOperators x) x = y == (lhs x = lhs y) and (rhs x = rhs y) and (quotedOperators x = quotedOperators y) elt(r:$, s:F, n:PositiveInteger) == applyRules([r pretend RewriteRule(Base, R, F)], s, n) -- remove the extra properties from the constant symbols in f F2Symbol f == l := select!(symbolIfCan #1 case Symbol, tower f)$List(Kernel F) eval(f, l, [symbolIfCan(k)::Symbol::F for k in l]) retractIfCan r == constant? pattern r => (u:= retractIfCan(lhs r)@Union(Kernel F,"failed")) case "failed" => "failed" F2Symbol(u::Kernel(F)::F) = rhs r "failed" rule(p, s, l) == lh := transformLhs(pt := convert(p)@P) mkRule(opt(lh.times) * (opt(lh.plus) + pt), lh.times * (lh.plus + p), lh.times * (lh.plus + s), l) opt f == retractIfCan(f)@Union(R, "failed") case R => convert f convert optional f -- appear?(x, [p1,...,pn]) is true if x appears as a variable in -- a composite pattern pi. appear?(x, l) == for p in l | p ~= x repeat member?(x, variables p) => return true false -- a sum/product p1 @ ... @ pn is "bad" if it will not match -- a sum/product p1 @ ... @ pn @ p(n+1) -- in which case one should transform p1 @ ... @ pn to -- p1 @ ... @ ?p(n+1) which does not change its meaning. -- examples of "bad" combinations -- sin(x) @ sin(y) sin(x) @ x -- examples of "good" combinations -- sin(x) @ y bad? u == u case List(P) => for x in u::List(P) repeat generic? x and not appear?(x, u::List(P)) => return false true false transformLhs p == bad? isPlus p => [new()$Symbol :: F, 1] bad? isTimes p => [0, new()$Symbol :: F] [0, 1] coerce(x:$):OutputForm == infix(" == "::Symbol::OutputForm, lhs(x)::OutputForm, rhs(x)::OutputForm) @ \section{package APPRULE ApplyRules} <<package APPRULE ApplyRules>>= )abbrev package APPRULE ApplyRules ++ Applications of rules to expressions ++ Author: Manuel Bronstein ++ Date Created: 20 Mar 1990 ++ Date Last Updated: 5 Jul 1990 ++ Description: ++ This package apply rewrite rules to expressions, calling ++ the pattern matcher. ++ Keywords: pattern, matching, rule. ApplyRules(Base, R, F): Exports == Implementation where Base : SetCategory R : Join(Ring, PatternMatchable Base, ConvertibleTo Pattern Base) F : Join(FunctionSpace R, PatternMatchable Base, ConvertibleTo Pattern Base) P ==> Pattern Base PR ==> PatternMatchResult(Base, F) RR ==> RewriteRule(Base, R, F) K ==> Kernel F Exports ==> with applyRules : (List RR, F) -> F ++ applyRules([r1,...,rn], expr) applies the rules ++ r1,...,rn to f an unlimited number of times, i.e. until ++ none of r1,...,rn is applicable to the expression. applyRules : (List RR, F, PositiveInteger) -> F ++ applyRules([r1,...,rn], expr, n) applies the rules ++ r1,...,rn to f a most n times. localUnquote: (F, List Symbol) -> F ++ localUnquote(f,ls) is a local function. Implementation ==> add import PatternFunctions1(Base, F) splitRules: List RR -> Record(lker: List K,lval: List F,rl: List RR) localApply : (List K, List F, List RR, F, PositiveInteger) -> F rewrite : (F, PR, List Symbol) -> F app : (List RR, F) -> F applist : (List RR, List F) -> List F isit : (F, P) -> PR isitwithpred: (F, P, List P, List PR) -> PR applist(lrule, arglist) == [app(lrule, arg) for arg in arglist] splitRules l == ncr := empty()$List(RR) lk := empty()$List(K) lv := empty()$List(F) for r in l repeat if (u := retractIfCan(r)@Union(Equation F, "failed")) case "failed" then ncr := concat(r, ncr) else lk := concat(retract(lhs(u::Equation F))@K, lk) lv := concat(rhs(u::Equation F), lv) [lk, lv, ncr] applyRules(l, s) == rec := splitRules l repeat (new:= localApply(rec.lker,rec.lval,rec.rl,s,1)) = s => return s s := new applyRules(l, s, n) == rec := splitRules l localApply(rec.lker, rec.lval, rec.rl, s, n) localApply(lk, lv, lrule, subject, n) == for i in 1..n repeat for k in lk for v in lv repeat subject := eval(subject, k, v) subject := app(lrule, subject) subject rewrite(f, res, l) == lk := empty()$List(K) lv := empty()$List(F) for rec in destruct res repeat lk := concat(kernel(rec.key), lk) lv := concat(rec.entry, lv) localUnquote(eval(f, lk, lv), l) if R has ConvertibleTo InputForm then localUnquote(f, l) == empty? l => f eval(f, l) else localUnquote(f, l) == f isitwithpred(subject, pat, vars, bad) == failed?(u := patternMatch(subject, pat, new()$PR)) => u satisfy?(u, pat)::Boolean => u member?(u, bad) => failed() for v in vars repeat addBadValue(v, getMatch(v, u)::F) isitwithpred(subject, pat, vars, concat(u, bad)) isit(subject, pat) == hasTopPredicate? pat => l : List P for v in (l := variables pat) repeat resetBadValues v isitwithpred(subject, pat, l, empty()) patternMatch(subject, pat, new()$PR) app(lrule, subject) == for r in lrule repeat not failed?(u := isit(subject, pattern r)) => return rewrite(rhs r, u, quotedOperators r) (k := retractIfCan(subject)@Union(K, "failed")) case K => operator(k::K) applist(lrule, argument(k::K)) (l := isPlus subject) case List(F) => +/applist(lrule,l::List(F)) (l := isTimes subject) case List(F) => */applist(lrule,l::List(F)) (e := isPower subject) case Record(val:F, exponent:Integer) => ee := e::Record(val:F, exponent:Integer) f := app(lrule, ee.val) positive?(ee.exponent) => f ** (ee.exponent)::NonNegativeInteger recip(f)::F ** (- ee.exponent)::NonNegativeInteger subject @ \section{domain RULESET Ruleset} <<domain RULESET Ruleset>>= )abbrev domain RULESET Ruleset ++ Sets of rules for the pattern matcher ++ Author: Manuel Bronstein ++ Date Created: 20 Mar 1990 ++ Date Last Updated: 29 Jun 1990 ++ Description: ++ A ruleset is a set of pattern matching rules grouped together. ++ Keywords: pattern, matching, rule. Ruleset(Base, R, F): Exports == Implementation where Base : SetCategory R : Join(Ring, PatternMatchable Base, ConvertibleTo Pattern Base) F : Join(FunctionSpace R, PatternMatchable Base, ConvertibleTo Pattern Base) RR ==> RewriteRule(Base, R, F) Exports ==> Join(SetCategory, Eltable(F, F)) with ruleset: List RR -> $ ++ ruleset([r1,...,rn]) creates the rule set \spad{{r1,...,rn}}. rules : $ -> List RR ++ rules(r) returns the rules contained in r. elt : ($, F, PositiveInteger) -> F ++ elt(r,f,n) or r(f, n) applies all the rules of r to f at most n times. Implementation ==> add import ApplyRules(Base, R, F) Rep := Set RR ruleset l == {l}$Rep coerce(x:$):OutputForm == coerce(x)$Rep x = y == x =$Rep y elt(x:$, f:F) == applyRules(rules x, f) elt(r:$, s:F, n:PositiveInteger) == applyRules(rules r, s, n) rules x == parts(x)$Rep @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain RULE RewriteRule>> <<package APPRULE ApplyRules>> <<domain RULESET Ruleset>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}