\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra rule.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain RULE RewriteRule}
<<domain RULE RewriteRule>>=
)abbrev domain RULE RewriteRule
++ Rules for the pattern matcher
++ Author: Manuel Bronstein
++ Date Created: 24 Oct 1988
++ Date Last Updated: 26 October 1993
++ Keywords: pattern, matching, rule.
RewriteRule(Base, R, F): Exports == Implementation where
  Base   : SetCategory
  R      : Join(Ring, PatternMatchable Base, OrderedSet,
                                 ConvertibleTo Pattern Base)
  F      : Join(FunctionSpace R, PatternMatchable Base,
                                 ConvertibleTo Pattern Base)

  P    ==> Pattern Base

  Exports ==>
   Join(SetCategory, Eltable(F, F), RetractableTo Equation F) with
    rule    : (F, F) -> $
      ++ rule(f, g) creates the rewrite rule: \spad{f == eval(g, g is f)},
      ++ with left-hand side f and right-hand side g.
    rule    : (F, F, List Symbol) -> $
      ++ rule(f, g, [f1,...,fn]) creates the rewrite rule
      ++ \spad{f == eval(eval(g, g is f), [f1,...,fn])},
      ++ that is a rule with left-hand side f and right-hand side g;
      ++ The symbols f1,...,fn are the operators that are considered
      ++ quoted, that is they are not evaluated during any rewrite,
      ++ but just applied formally to their arguments.
    suchThat: ($, List Symbol, List F -> Boolean) -> $
      ++ suchThat(r, [a1,...,an], f) returns the rewrite rule r with
      ++ the predicate \spad{f(a1,...,an)} attached to it.
    pattern : $ -> P
      ++ pattern(r) returns the pattern corresponding to
      ++ the left hand side of the rule r.
    lhs     : $ -> F
      ++ lhs(r) returns the left hand side of the rule r.
    rhs     : $ -> F
      ++ rhs(r) returns the right hand side of the rule r.
    elt     : ($, F, PositiveInteger) -> F
      ++ elt(r,f,n) or r(f, n) applies the rule r to f at most n times.
    quotedOperators: $ -> List Symbol
      ++ quotedOperators(r) returns the list of operators
      ++ on the right hand side of r that are considered
      ++ quoted, that is they are not evaluated during any rewrite,
      ++ but just applied formally to their arguments.

  Implementation ==> add
    import ApplyRules(Base, R, F)
    import PatternFunctions1(Base, F)
    import FunctionSpaceAssertions(R, F)

    Rep := Record(pat: P, lft: F, rgt: F, qot: List Symbol)

    mkRule      : (P, F, F, List Symbol) -> $
    transformLhs: P -> Record(plus: F, times: F)
    bad?        : Union(List P, "failed") -> Boolean
    appear?     : (P, List P) -> Boolean
    opt         : F -> P
    F2Symbol    : F -> F

    pattern x                == x.pat
    lhs x                    == x.lft
    rhs x                    == x.rgt
    quotedOperators x        == x.qot
    mkRule(pt, p, s, l)      == [pt, p, s, l]
    coerce(eq:Equation F):$  == rule(lhs eq, rhs eq, empty())
    rule(l, r)               == rule(l, r, empty())
    elt(r:$, s:F) == applyRules([r pretend RewriteRule(Base, R, F)], s)

    suchThat(x, l, f) ==
      mkRule(suchThat(pattern x,l,f),  lhs x, rhs x, quotedOperators x)

    x = y ==
     (lhs x = lhs y) and (rhs x = rhs y) and
        (quotedOperators x = quotedOperators y)

    elt(r:$, s:F, n:PositiveInteger) ==
      applyRules([r pretend RewriteRule(Base, R, F)], s, n)

-- remove the extra properties from the constant symbols in f
    F2Symbol f ==
      l := select_!(symbolIfCan #1 case Symbol, tower f)$List(Kernel F)
      eval(f, l, [symbolIfCan(k)::Symbol::F for k in l])

    retractIfCan r ==
      constant? pattern r =>
        (u:= retractIfCan(lhs r)@Union(Kernel F,"failed")) case "failed"
          => "failed"
        F2Symbol(u::Kernel(F)::F) = rhs r
      "failed"

    rule(p, s, l) ==
      lh := transformLhs(pt := convert(p)@P)
      mkRule(opt(lh.times) * (opt(lh.plus) + pt),
             lh.times * (lh.plus + p), lh.times * (lh.plus + s), l)

    opt f ==
      retractIfCan(f)@Union(R, "failed") case R => convert f
      convert optional f

-- appear?(x, [p1,...,pn]) is true if x appears as a variable in
-- a composite pattern pi.
    appear?(x, l) ==
      for p in l | p ^= x repeat
        member?(x, variables p) => return true
      false

-- a sum/product p1 @ ... @ pn is "bad" if it will not match
-- a sum/product p1 @ ... @ pn @ p(n+1)
-- in which case one should transform p1 @ ... @ pn to
-- p1 @ ... @ ?p(n+1) which does not change its meaning.
-- examples of "bad" combinations
--   sin(x) @ sin(y)     sin(x) @ x
-- examples of "good" combinations
--   sin(x) @ y
    bad? u ==
      u case List(P) =>
        for x in u::List(P) repeat
          generic? x and not appear?(x, u::List(P)) => return false
        true
      false

    transformLhs p ==
      bad? isPlus p  => [new()$Symbol :: F, 1]
      bad? isTimes p => [0, new()$Symbol :: F]
      [0, 1]

    coerce(x:$):OutputForm ==
      infix(" == "::Symbol::OutputForm,
            lhs(x)::OutputForm, rhs(x)::OutputForm)

@
\section{package APPRULE ApplyRules}
<<package APPRULE ApplyRules>>=
)abbrev package APPRULE ApplyRules
++ Applications of rules to expressions
++ Author: Manuel Bronstein
++ Date Created: 20 Mar 1990
++ Date Last Updated: 5 Jul 1990
++ Description:
++   This package apply rewrite rules to expressions, calling
++   the pattern matcher.
++ Keywords: pattern, matching, rule.
ApplyRules(Base, R, F): Exports == Implementation where
  Base   : SetCategory
  R      : Join(Ring, PatternMatchable Base, OrderedSet,
                                 ConvertibleTo Pattern Base)
  F      : Join(FunctionSpace R, PatternMatchable Base,
                                 ConvertibleTo Pattern Base)

  P  ==> Pattern Base
  PR ==> PatternMatchResult(Base, F)
  RR ==> RewriteRule(Base, R, F)
  K  ==> Kernel F

  Exports ==> with
    applyRules  : (List RR, F) -> F
      ++ applyRules([r1,...,rn], expr) applies the rules
      ++ r1,...,rn to f an unlimited number of times, i.e. until
      ++ none of r1,...,rn is applicable to the expression.
    applyRules  : (List RR, F, PositiveInteger) -> F
      ++ applyRules([r1,...,rn], expr, n) applies the rules
      ++ r1,...,rn to f a most n times.
    localUnquote: (F, List Symbol) -> F
      ++ localUnquote(f,ls) is a local function.

  Implementation ==> add
    import PatternFunctions1(Base, F)

    splitRules: List RR -> Record(lker: List K,lval: List F,rl: List RR)
    localApply  : (List K, List F, List RR, F, PositiveInteger) -> F
    rewrite     : (F, PR, List Symbol) -> F
    app         : (List RR, F) -> F
    applist     : (List RR, List F) -> List F
    isit        : (F, P) -> PR
    isitwithpred: (F, P, List P, List PR) -> PR

    applist(lrule, arglist)  == [app(lrule, arg) for arg in arglist]

    splitRules l ==
      ncr := empty()$List(RR)
      lk  := empty()$List(K)
      lv  := empty()$List(F)
      for r in l repeat
        if (u := retractIfCan(r)@Union(Equation F, "failed"))
          case "failed" then ncr := concat(r, ncr)
          else
            lk := concat(retract(lhs(u::Equation F))@K, lk)
            lv := concat(rhs(u::Equation F), lv)
      [lk, lv, ncr]

    applyRules(l, s) ==
      rec := splitRules l
      repeat
        (new:= localApply(rec.lker,rec.lval,rec.rl,s,1)) = s => return s
        s := new

    applyRules(l, s, n) ==
      rec := splitRules l
      localApply(rec.lker, rec.lval, rec.rl, s, n)

    localApply(lk, lv, lrule, subject, n) ==
      for i in 1..n repeat
        for k in lk for v in lv repeat
          subject := eval(subject, k, v)
        subject := app(lrule, subject)
      subject

    rewrite(f, res, l) ==
      lk := empty()$List(K)
      lv := empty()$List(F)
      for rec in destruct res repeat
        lk := concat(kernel(rec.key), lk)
        lv := concat(rec.entry, lv)
      localUnquote(eval(f, lk, lv), l)

    if R has ConvertibleTo InputForm then
      localUnquote(f, l) ==
        empty? l => f
        eval(f, l)
    else
      localUnquote(f, l) == f

    isitwithpred(subject, pat, vars, bad) ==
      failed?(u := patternMatch(subject, pat, new()$PR)) => u
      satisfy?(u, pat)::Boolean => u
      member?(u, bad) => failed()
      for v in vars repeat addBadValue(v, getMatch(v, u)::F)
      isitwithpred(subject, pat, vars, concat(u, bad))

    isit(subject, pat) ==
      hasTopPredicate? pat =>
        for v in (l := variables pat) repeat resetBadValues v
        isitwithpred(subject, pat, l, empty())
      patternMatch(subject, pat, new()$PR)

    app(lrule, subject) ==
      for r in lrule repeat
        not failed?(u := isit(subject, pattern r)) =>
          return rewrite(rhs r, u, quotedOperators r)
      (k := retractIfCan(subject)@Union(K, "failed")) case K =>
        operator(k::K) applist(lrule, argument(k::K))
      (l := isPlus  subject) case List(F) => +/applist(lrule,l::List(F))
      (l := isTimes subject) case List(F) => */applist(lrule,l::List(F))
      (e := isPower subject) case Record(val:F, exponent:Integer) =>
        ee := e::Record(val:F, exponent:Integer)
        f  := app(lrule, ee.val)
        positive?(ee.exponent) => f ** (ee.exponent)::NonNegativeInteger
        recip(f)::F ** (- ee.exponent)::NonNegativeInteger
      subject

@
\section{domain RULESET Ruleset}
<<domain RULESET Ruleset>>=
)abbrev domain RULESET Ruleset
++ Sets of rules for the pattern matcher
++ Author: Manuel Bronstein
++ Date Created: 20 Mar 1990
++ Date Last Updated: 29 Jun 1990
++ Description:
++   A ruleset is a set of pattern matching rules grouped together.
++ Keywords: pattern, matching, rule.
Ruleset(Base, R, F): Exports == Implementation where
  Base   : SetCategory
  R      : Join(Ring, PatternMatchable Base, OrderedSet,
                                 ConvertibleTo Pattern Base)
  F      : Join(FunctionSpace R, PatternMatchable Base,
                                 ConvertibleTo Pattern Base)

  RR ==> RewriteRule(Base, R, F)

  Exports ==> Join(SetCategory, Eltable(F, F)) with
    ruleset: List RR -> $
      ++ ruleset([r1,...,rn]) creates the rule set \spad{{r1,...,rn}}.
    rules  : $ -> List RR
      ++ rules(r) returns the rules contained in r.
    elt    : ($, F, PositiveInteger) -> F
      ++ elt(r,f,n) or r(f, n) applies all the rules of r to f at most n times.

  Implementation ==> add
    import ApplyRules(Base, R, F)

    Rep := Set RR

    ruleset l                        == {l}$Rep
    coerce(x:$):OutputForm           == coerce(x)$Rep
    x = y                            == x =$Rep y
    elt(x:$, f:F)                    == applyRules(rules x, f)
    elt(r:$, s:F, n:PositiveInteger) == applyRules(rules r, s, n)
    rules x                          == parts(x)$Rep

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain RULE RewriteRule>>
<<package APPRULE ApplyRules>>
<<domain RULESET Ruleset>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}