\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra rep2.spad} \author{Holger Gollan, Johannes Grabmeier} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package REP2 RepresentationPackage2} <<package REP2 RepresentationPackage2>>= import Boolean import Integer import PositiveInteger import List import Vector import Matrix )abbrev package REP2 RepresentationPackage2 ++ Authors: Holger Gollan, Johannes Grabmeier ++ Date Created: 10 September 1987 ++ Date Last Updated: 20 August 1990 ++ Basic Operations: areEquivalent?, isAbsolutelyIrreducible?, ++ split, meatAxe ++ Related Constructors: RepresentationTheoryPackage1 ++ Also See: IrrRepSymNatPackage ++ AMS Classifications: ++ Keywords: meat-axe, modular representation ++ Reference: ++ R. A. Parker: The Computer Calculation of Modular Characters ++ (The Meat-Axe), in M. D. Atkinson (Ed.), Computational Group Theory ++ Academic Press, Inc., London 1984 ++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and ++ their Realization in the Computer Algebra System Scratchpad, ++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23. ++ Description: ++ RepresentationPackage2 provides functions for working with ++ modular representations of finite groups and algebra. ++ The routines in this package are created, using ideas of R. Parker, ++ (the meat-Axe) to get smaller representations from bigger ones, ++ i.e. finding sub- and factormodules, or to show, that such the ++ representations are irreducible. ++ Note: most functions are randomized functions of Las Vegas type ++ i.e. every answer is correct, but with small probability ++ the algorithm fails to get an answer. RepresentationPackage2(R): public == private where R : Ring OF ==> OutputForm I ==> Integer L ==> List SM ==> SquareMatrix M ==> Matrix NNI ==> NonNegativeInteger V ==> Vector PI ==> PositiveInteger B ==> Boolean RADIX ==> RadixExpansion public ==> with completeEchelonBasis : V V R -> M R ++ completeEchelonBasis(lv) completes the basis {\em lv} assumed ++ to be in echelon form of a subspace of {\em R**n} (n the length ++ of all the vectors in {\em lv}) with unit vectors to a basis of ++ {\em R**n}. It is assumed that the argument is not an empty ++ vector and that it is not the basis of the 0-subspace. ++ Note: the rows of the result correspond to the vectors of the basis. createRandomElement : (L M R, M R) -> M R ++ createRandomElement(aG,x) creates a random element of the group ++ algebra generated by {\em aG}. -- randomWord : (L L I, L M) -> M R --++ You can create your own 'random' matrix with "randomWord(lli, lm)". --++ Each li in lli determines a product of matrices, the entries in li --++ determine which matrix from lm is chosen. Finally we sum over all --++ products. The result "sm" can be used to call split with (e.g.) --++ second parameter "first nullSpace sm" if R has EuclideanDomain then -- using rowEchelon cyclicSubmodule : (L M R, V R) -> V V R ++ cyclicSubmodule(lm,v) generates a basis as follows. ++ It is assumed that the size n of the vector equals the number ++ of rows and columns of the matrices. Then the matrices generate ++ a subalgebra, say \spad{A}, of the algebra of all square matrices of ++ dimension n. {\em V R} is an \spad{A}-module in the natural way. ++ cyclicSubmodule(lm,v) generates the R-Basis of {\em Av} as ++ described in section 6 of R. A. Parker's "The Meat-Axe". ++ Note: in contrast to the description in "The Meat-Axe" and to ++ {\em standardBasisOfCyclicSubmodule} the result is in ++ echelon form. standardBasisOfCyclicSubmodule : (L M R, V R) -> M R ++ standardBasisOfCyclicSubmodule(lm,v) returns a matrix as follows. ++ It is assumed that the size n of the vector equals the number ++ of rows and columns of the matrices. Then the matrices generate ++ a subalgebra, say \spad{A}, ++ of the algebra of all square matrices of ++ dimension n. {\em V R} is an \spad{A}-module in the natural way. ++ standardBasisOfCyclicSubmodule(lm,v) calculates a matrix whose ++ non-zero column vectors are the R-Basis of {\em Av} achieved ++ in the way as described in section 6 ++ of R. A. Parker's "The Meat-Axe". ++ Note: in contrast to {\em cyclicSubmodule}, the result is not ++ in echelon form. if R has Field then -- only because of inverse in SM areEquivalent? : (L M R, L M R, B, I) -> M R ++ areEquivalent?(aG0,aG1,randomelements,numberOfTries) tests ++ whether the two lists of matrices, all assumed of same ++ square shape, can be simultaneously conjugated by a non-singular ++ matrix. If these matrices represent the same group generators, ++ the representations are equivalent. ++ The algorithm tries ++ {\em numberOfTries} times to create elements in the ++ generated algebras in the same fashion. If their ranks differ, ++ they are not equivalent. If an ++ isomorphism is assumed, then ++ the kernel of an element of the first algebra ++ is mapped to the kernel of the corresponding element in the ++ second algebra. Now consider the one-dimensional ones. ++ If they generate the whole space (e.g. irreducibility !) ++ we use {\em standardBasisOfCyclicSubmodule} to create the ++ only possible transition matrix. The method checks whether the ++ matrix conjugates all corresponding matrices from {\em aGi}. ++ The way to choose the singular matrices is as in {\em meatAxe}. ++ If the two representations are equivalent, this routine ++ returns the transformation matrix {\em TM} with ++ {\em aG0.i * TM = TM * aG1.i} for all i. If the representations ++ are not equivalent, a small 0-matrix is returned. ++ Note: the case ++ with different sets of group generators cannot be handled. areEquivalent? : (L M R, L M R) -> M R ++ areEquivalent?(aG0,aG1) calls {\em areEquivalent?(aG0,aG1,true,25)}. ++ Note: the choice of 25 was rather arbitrary. areEquivalent? : (L M R, L M R, I) -> M R ++ areEquivalent?(aG0,aG1,numberOfTries) calls ++ {\em areEquivalent?(aG0,aG1,true,25)}. ++ Note: the choice of 25 was rather arbitrary. isAbsolutelyIrreducible? : (L M R, I) -> B ++ isAbsolutelyIrreducible?(aG, numberOfTries) uses ++ Norton's irreducibility test to check for absolute ++ irreduciblity, assuming if a one-dimensional kernel is found. ++ As no field extension changes create "new" elements ++ in a one-dimensional space, the criterium stays true ++ for every extension. The method looks for one-dimensionals only ++ by creating random elements (no fingerprints) since ++ a run of {\em meatAxe} would have proved absolute irreducibility ++ anyway. isAbsolutelyIrreducible? : L M R -> B ++ isAbsolutelyIrreducible?(aG) calls ++ {\em isAbsolutelyIrreducible?(aG,25)}. ++ Note: the choice of 25 was rather arbitrary. split : (L M R, V R) -> L L M R ++ split(aG, vector) returns a subalgebra \spad{A} of all ++ square matrix of dimension n as a list of list of matrices, ++ generated by the list of matrices aG, where n denotes both ++ the size of vector as well as the dimension of each of the ++ square matrices. ++ {\em V R} is an A-module in the natural way. ++ split(aG, vector) then checks whether the cyclic submodule ++ generated by {\em vector} is a proper submodule of {\em V R}. ++ If successful, it returns a two-element list, which contains ++ first the list of the representations of the submodule, ++ then the list of the representations of the factor module. ++ If the vector generates the whole module, a one-element list ++ of the old representation is given. ++ Note: a later version this should call the other split. split: (L M R, V V R) -> L L M R ++ split(aG,submodule) uses a proper submodule of {\em R**n} ++ to create the representations of the submodule and of ++ the factor module. if (R has Finite) and (R has Field) then meatAxe : (L M R, B, I, I) -> L L M R ++ meatAxe(aG,randomElements,numberOfTries, maxTests) returns ++ a 2-list of representations as follows. ++ All matrices of argument aG are assumed to be square ++ and of equal size. ++ Then \spad{aG} generates a subalgebra, say \spad{A}, of the algebra ++ of all square matrices of dimension n. {\em V R} is an A-module ++ in the usual way. ++ meatAxe(aG,numberOfTries, maxTests) creates at most ++ {\em numberOfTries} random elements of the algebra, tests ++ them for singularity. If singular, it tries at most {\em maxTests} ++ elements of its kernel to generate a proper submodule. ++ If successful, a 2-list is returned: first, a list ++ containing first the list of the ++ representations of the submodule, then a list of the ++ representations of the factor module. ++ Otherwise, if we know that all the kernel is already ++ scanned, Norton's irreducibility test can be used either ++ to prove irreducibility or to find the splitting. ++ If {\em randomElements} is {\em false}, the first 6 tries ++ use Parker's fingerprints. meatAxe : L M R -> L L M R ++ meatAxe(aG) calls {\em meatAxe(aG,false,25,7)} returns ++ a 2-list of representations as follows. ++ All matrices of argument \spad{aG} are assumed to be square ++ and of ++ equal size. Then \spad{aG} generates a subalgebra, ++ say \spad{A}, of the algebra ++ of all square matrices of dimension n. {\em V R} is an A-module ++ in the usual way. ++ meatAxe(aG) creates at most 25 random elements ++ of the algebra, tests ++ them for singularity. If singular, it tries at most 7 ++ elements of its kernel to generate a proper submodule. ++ If successful a list which contains first the list of the ++ representations of the submodule, then a list of the ++ representations of the factor module is returned. ++ Otherwise, if we know that all the kernel is already ++ scanned, Norton's irreducibility test can be used either ++ to prove irreducibility or to find the splitting. ++ Notes: the first 6 tries use Parker's fingerprints. ++ Also, 7 covers the case of three-dimensional kernels over ++ the field with 2 elements. meatAxe: (L M R, B) -> L L M R ++ meatAxe(aG, randomElements) calls {\em meatAxe(aG,false,6,7)}, ++ only using Parker's fingerprints, if {\em randomElemnts} is false. ++ If it is true, it calls {\em meatAxe(aG,true,25,7)}, ++ only using random elements. ++ Note: the choice of 25 was rather arbitrary. ++ Also, 7 covers the case of three-dimensional kernels over the field ++ with 2 elements. meatAxe : (L M R, PI) -> L L M R ++ meatAxe(aG, numberOfTries) calls ++ {\em meatAxe(aG,true,numberOfTries,7)}. ++ Notes: 7 covers the case of three-dimensional ++ kernels over the field with 2 elements. scanOneDimSubspaces: (L V R, I) -> V R ++ scanOneDimSubspaces(basis,n) gives a canonical representative ++ of the {\em n}-th one-dimensional subspace of the vector space ++ generated by the elements of {\em basis}, all from {\em R**n}. ++ The coefficients of the representative are of shape ++ {\em (0,...,0,1,*,...,*)}, {\em *} in R. If the size of R ++ is q, then there are {\em (q**n-1)/(q-1)} of them. ++ We first reduce n modulo this number, then find the ++ largest i such that {\em +/[q**i for i in 0..i-1] <= n}. ++ Subtracting this sum of powers from n results in an ++ i-digit number to basis q. This fills the positions of the ++ stars. -- would prefer to have (V V R,.... but nullSpace results -- in L V R private ==> add -- import of domain and packages import OutputForm -- declarations and definitions of local variables and -- local function blockMultiply: (M R, M R, L I, I) -> M R -- blockMultiply(a,b,li,n) assumes that a has n columns -- and b has n rows, li is a sublist of the rows of a and -- a sublist of the columns of b. The result is the -- multiplication of the (li x n) part of a with the -- (n x li) part of b. We need this, because just matrix -- multiplying the parts would require extra storage. blockMultiply(a, b, li, n) == matrix([[ +/[a(i,s) * b(s,j) for s in 1..n ] _ for j in li ] for i in li]) fingerPrint: (NNI, M R, M R, M R) -> M R -- is local, because one should know all the results for smaller i fingerPrint (i : NNI, a : M R, b : M R, x :M R) == -- i > 2 only gives the correct result if the value of x from -- the parameter list equals the result of fingerprint(i-1,...) (i::PI) = 1 => x := a + b + a*b (i::PI) = 2 => x := (x + a*b)*b (i::PI) = 3 => x := a + b*x (i::PI) = 4 => x := x + b (i::PI) = 5 => x := x + a*b (i::PI) = 6 => x := x - a + b*a error "Sorry, but there are only 6 fingerprints!" x -- definition of exported functions --randomWord(lli,lm) == -- -- we assume that all matrices are square of same size -- numberOfMatrices := #lm -- +/[*/[lm.(1+i rem numberOfMatrices) for i in li ] for li in lli] completeEchelonBasis(basis) == dimensionOfSubmodule : NNI := #basis n : NNI := # basis.1 indexOfVectorToBeScanned : NNI := 1 row : NNI := dimensionOfSubmodule completedBasis : M R := zero(n, n) for i in 1..dimensionOfSubmodule repeat completedBasis := setRow_!(completedBasis, i, basis.i) if #basis <= n then newStart : NNI := 1 for j in 1..n while indexOfVectorToBeScanned <= dimensionOfSubmodule repeat if basis.indexOfVectorToBeScanned.j = 0 then completedBasis(1+row,j) := 1 --put unit vector into basis row := row + 1 else indexOfVectorToBeScanned := indexOfVectorToBeScanned + 1 newStart : NNI := j + 1 for j in newStart..n repeat completedBasis(j,j) := 1 --put unit vector into basis completedBasis createRandomElement(aG,algElt) == numberOfGenerators : NNI := #aG -- randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) algElt := algElt * aG.randomIndex -- randomIndxElement := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) algElt + aG.randomIndex if R has EuclideanDomain then cyclicSubmodule (lm : L M R, v : V R) == basis : M R := rowEchelon matrix list entries v -- normalizing the vector -- all these elements lie in the submodule generated by v furtherElts : L V R := [(lm.i*v)::V R for i in 1..maxIndex lm] --furtherElts has elements of the generated submodule. It will --will be checked whether they are in the span of the vectors --computed so far. Of course we stop if we have got the whole --space. while (not null furtherElts) and (nrows basis < #v) repeat w : V R := first furtherElts nextVector : M R := matrix list entries w -- normalizing the vector -- will the rank change if we add this nextVector -- to the basis so far computed? addedToBasis : M R := vertConcat(basis, nextVector) if rank addedToBasis ~= nrows basis then basis := rowEchelon addedToBasis -- add vector w to basis updateFurtherElts : L V R := _ [(lm.i*w)::V R for i in 1..maxIndex lm] furtherElts := append (rest furtherElts, updateFurtherElts) else -- the vector w lies in the span of matrix, no updating -- of the basis furtherElts := rest furtherElts vector [row(basis, i) for i in 1..maxRowIndex basis] standardBasisOfCyclicSubmodule (lm : L M R, v : V R) == dim : NNI := #v standardBasis : L L R := list(entries v) basis : M R := rowEchelon matrix list entries v -- normalizing the vector -- all these elements lie in the submodule generated by v furtherElts : L V R := [(lm.i*v)::V R for i in 1..maxIndex lm] --furtherElts has elements of the generated submodule. It will --will be checked whether they are in the span of the vectors --computed so far. Of course we stop if we have got the whole --space. while (not null furtherElts) and (nrows basis < #v) repeat w : V R := first furtherElts nextVector : M R := matrix list entries w -- normalizing the vector -- will the rank change if we add this nextVector -- to the basis so far computed? addedToBasis : M R := vertConcat(basis, nextVector) if rank addedToBasis ~= nrows basis then standardBasis := cons(entries w, standardBasis) basis := rowEchelon addedToBasis -- add vector w to basis updateFurtherElts : L V R := _ [lm.i*w for i in 1..maxIndex lm] furtherElts := append (rest furtherElts, updateFurtherElts) else -- the vector w lies in the span of matrix, therefore -- no updating of matrix furtherElts := rest furtherElts transpose matrix standardBasis if R has Field then -- only because of inverse in Matrix -- as conditional local functions, *internal have to be here splitInternal: (L M R, V R, B) -> L L M R splitInternal(algebraGenerators : L M R, vector: V R,doSplitting? : B) == n : I := # vector -- R-rank of representation module = -- degree of representation submodule : V V R := cyclicSubmodule (algebraGenerators,vector) rankOfSubmodule : I := # submodule -- R-Rank of submodule submoduleRepresentation : L M R := nil() factormoduleRepresentation : L M R := nil() if n ~= rankOfSubmodule then messagePrint " A proper cyclic submodule is found." if doSplitting? then -- no else !! submoduleIndices : L I := [i for i in 1..rankOfSubmodule] factormoduleIndices : L I := [i for i in (1+rankOfSubmodule)..n] transitionMatrix : M R := _ transpose completeEchelonBasis submodule messagePrint " Transition matrix computed" inverseTransitionMatrix : M R := _ autoCoerce(inverse transitionMatrix)$Union(M R,"failed") messagePrint " The inverse of the transition matrix computed" messagePrint " Now transform the matrices" for i in 1..maxIndex algebraGenerators repeat helpMatrix : M R := inverseTransitionMatrix * algebraGenerators.i -- in order to not create extra space and regarding the fact -- that we only want the two blocks in the main diagonal we -- multiply with the aid of the local function blockMultiply submoduleRepresentation := cons( blockMultiply( _ helpMatrix,transitionMatrix,submoduleIndices,n), _ submoduleRepresentation) factormoduleRepresentation := cons( blockMultiply( _ helpMatrix,transitionMatrix,factormoduleIndices,n), _ factormoduleRepresentation) [reverse submoduleRepresentation, reverse _ factormoduleRepresentation] else -- represesentation is irreducible messagePrint " The generated cyclic submodule was not proper" [algebraGenerators] irreducibilityTestInternal: (L M R, M R, B) -> L L M R irreducibilityTestInternal(algebraGenerators,_ singularMatrix,split?) == algebraGeneratorsTranspose : L M R := [transpose _ algebraGenerators.j for j in 1..maxIndex algebraGenerators] xt : M R := transpose singularMatrix messagePrint " We know that all the cyclic submodules generated by all" messagePrint " non-trivial element of the singular matrix under view are" messagePrint " not proper, hence Norton's irreducibility test can be done:" -- actually we only would need one (!) non-trivial element from -- the kernel of xt, such an element must exist as the transpose -- of a singular matrix is of course singular. Question: Can -- we get it more easily from the kernel of x = singularMatrix? kernel : L V R := nullSpace xt result : L L M R := _ splitInternal(algebraGeneratorsTranspose,first kernel,split?) if null rest result then -- this means first kernel generates -- the whole module if 1 = #kernel then messagePrint " Representation is absolutely irreducible" else messagePrint " Representation is irreducible, but we don't know " messagePrint " whether it is absolutely irreducible" else if split? then messagePrint " Representation is not irreducible and it will be split:" -- these are the dual representations, so calculate the -- dual to get the desired result, i.e. "transpose inverse" -- improvements?? for i in 1..maxIndex result repeat for j in 1..maxIndex (result.i) repeat mat : M R := result.i.j result.i.j := _ transpose autoCoerce(inverse mat)$Union(M R,"failed") else messagePrint " Representation is not irreducible, use meatAxe to split" -- if "split?" then dual representation interchange factor -- and submodules, hence reverse reverse result -- exported functions for FiniteField-s. areEquivalent? (aG0, aG1) == areEquivalent? (aG0, aG1, true, 25) areEquivalent? (aG0, aG1, numberOfTries) == areEquivalent? (aG0, aG1, true, numberOfTries) areEquivalent? (aG0, aG1, randomelements, numberOfTries) == result : B := false transitionM : M R := zero(1, 1) numberOfGenerators : NNI := #aG0 -- need a start value for creating random matrices: -- if we switch to randomelements later, we take the last -- fingerprint. if randomelements then -- random should not be from I --randomIndex : I := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x0 : M R := aG0.randomIndex x1 : M R := aG1.randomIndex n : NNI := #row(x0,1) -- degree of representation foundResult : B := false for i in 1..numberOfTries until foundResult repeat -- try to create a non-singular element of the algebra -- generated by "aG". If only two generators, -- i < 7 and not "randomelements" use Parker's fingerprints -- i >= 7 create random elements recursively: -- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly -- chosen elements form "aG". if i = 7 then randomelements := true if randomelements then --randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x0 := x0 * aG0.randomIndex x1 := x1 * aG1.randomIndex --randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x0 := x0 + aG0.randomIndex x1 := x1 + aG1.randomIndex else x0 := fingerPrint (i, aG0.0, aG0.1 ,x0) x1 := fingerPrint (i, aG1.0, aG1.1 ,x1) -- test singularity of x0 and x1 rk0 : NNI := rank x0 rk1 : NNI := rank x1 rk0 ~= rk1 => messagePrint "Dimensions of kernels differ" foundResult := true result := false -- can assume dimensions are equal rk0 ~= n - 1 => -- not of any use here if kernel not one-dimensional if randomelements then messagePrint "Random element in generated algebra does" messagePrint " not have a one-dimensional kernel" else messagePrint "Fingerprint element in generated algebra does" messagePrint " not have a one-dimensional kernel" -- can assume dimensions are equal and equal to n-1 if randomelements then messagePrint "Random element in generated algebra has" messagePrint " one-dimensional kernel" else messagePrint "Fingerprint element in generated algebra has" messagePrint " one-dimensional kernel" kernel0 : L V R := nullSpace x0 kernel1 : L V R := nullSpace x1 baseChange0 : M R := standardBasisOfCyclicSubmodule(_ aG0,kernel0.1) baseChange1 : M R := standardBasisOfCyclicSubmodule(_ aG1,kernel1.1) (ncols baseChange0) ~= (ncols baseChange1) => messagePrint " Dimensions of generated cyclic submodules differ" foundResult := true result := false -- can assume that dimensions of cyclic submodules are equal (ncols baseChange0) = n => -- full dimension transitionM := baseChange0 * _ autoCoerce(inverse baseChange1)$Union(M R,"failed") foundResult := true result := true for j in 1..numberOfGenerators while result repeat if (aG0.j*transitionM) ~= (transitionM*aG1.j) then result := false transitionM := zero(1 ,1) messagePrint " There is no isomorphism, as the only possible one" messagePrint " fails to do the necessary base change" -- can assume that dimensions of cyclic submodules are not "n" messagePrint " Generated cyclic submodules have equal, but not full" messagePrint " dimension, hence we can not draw any conclusion" -- here ends the for-loop if not foundResult then messagePrint " " messagePrint "Can neither prove equivalence nor inequivalence." messagePrint " Try again." else if result then messagePrint " " messagePrint "Representations are equivalent." else messagePrint " " messagePrint "Representations are not equivalent." transitionM isAbsolutelyIrreducible?(aG) == isAbsolutelyIrreducible?(aG,25) isAbsolutelyIrreducible?(aG, numberOfTries) == result : B := false numberOfGenerators : NNI := #aG -- need a start value for creating random matrices: -- randomIndex : I := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x : M R := aG.randomIndex n : NNI := #row(x,1) -- degree of representation foundResult : B := false for i in 1..numberOfTries until foundResult repeat -- try to create a non-singular element of the algebra -- generated by "aG", dimension of its kernel being 1. -- create random elements recursively: -- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly -- chosen elements form "aG". -- randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x := x * aG.randomIndex --randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x := x + aG.randomIndex -- test whether rank of x is n-1 rk : NNI := rank x if rk = n - 1 then foundResult := true messagePrint "Random element in generated algebra has" messagePrint " one-dimensional kernel" kernel : L V R := nullSpace x if n=#cyclicSubmodule(aG, first kernel) then result := (irreducibilityTestInternal(aG,x,false)).1 ~= nil()$(L M R) -- result := not null? first irreducibilityTestInternal(aG,x,false) -- this down't compile !! else -- we found a proper submodule result := false --split(aG,kernel.1) -- to get the splitting else -- not of any use here if kernel not one-dimensional messagePrint "Random element in generated algebra does" messagePrint " not have a one-dimensional kernel" -- here ends the for-loop if not foundResult then messagePrint "We have not found a one-dimensional kernel so far," messagePrint " as we do a random search you could try again" --else -- if not result then -- messagePrint "Representation is not irreducible." -- else -- messagePrint "Representation is irreducible." result split(algebraGenerators: L M R, vector: V R) == splitInternal(algebraGenerators, vector, true) split(algebraGenerators : L M R, submodule: V V R) == --not zero submodule n : NNI := #submodule.1 -- R-rank of representation module = -- degree of representation rankOfSubmodule : I := (#submodule) :: I --R-Rank of submodule submoduleRepresentation : L M R := nil() factormoduleRepresentation : L M R := nil() submoduleIndices : L I := [i for i in 1..rankOfSubmodule] factormoduleIndices : L I := [i for i in (1+rankOfSubmodule)..(n::I)] transitionMatrix : M R := _ transpose completeEchelonBasis submodule messagePrint " Transition matrix computed" inverseTransitionMatrix : M R := autoCoerce(inverse transitionMatrix)$Union(M R,"failed") messagePrint " The inverse of the transition matrix computed" messagePrint " Now transform the matrices" for i in 1..maxIndex algebraGenerators repeat helpMatrix : M R := inverseTransitionMatrix * algebraGenerators.i -- in order to not create extra space and regarding the fact -- that we only want the two blocks in the main diagonal we -- multiply with the aid of the local function blockMultiply submoduleRepresentation := cons( blockMultiply( _ helpMatrix,transitionMatrix,submoduleIndices,n), _ submoduleRepresentation) factormoduleRepresentation := cons( blockMultiply( _ helpMatrix,transitionMatrix,factormoduleIndices,n), _ factormoduleRepresentation) cons(reverse submoduleRepresentation, list( reverse _ factormoduleRepresentation)::(L L M R)) -- the following is "under" "if R has Field", as there are compiler -- problems with conditinally defined local functions, i.e. it -- doesn't know, that "FiniteField" has "Field". -- we are scanning through the vectorspaces if (R has Finite) and (R has Field) then meatAxe(algebraGenerators, randomelements, numberOfTries, _ maxTests) == numberOfGenerators : NNI := #algebraGenerators result : L L M R := nil()$(L L M R) q : PI := size()$R:PI -- need a start value for creating random matrices: -- if we switch to randomelements later, we take the last -- fingerprint. if randomelements then -- random should not be from I --randomIndex : I := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x : M R := algebraGenerators.randomIndex foundResult : B := false for i in 1..numberOfTries until foundResult repeat -- try to create a non-singular element of the algebra -- generated by "algebraGenerators". If only two generators, -- i < 7 and not "randomelements" use Parker's fingerprints -- i >= 7 create random elements recursively: -- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly -- chosen elements form "algebraGenerators". if i = 7 then randomelements := true if randomelements then --randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x := x * algebraGenerators.randomIndex --randomIndex := randnum numberOfGenerators randomIndex := 1+(random()$Integer rem numberOfGenerators) x := x + algebraGenerators.randomIndex else x := fingerPrint (i, algebraGenerators.1,_ algebraGenerators.2 , x) -- test singularity of x n : NNI := #row(x, 1) -- degree of representation if (rank x) ~= n then -- x singular if randomelements then messagePrint "Random element in generated algebra is singular" else messagePrint "Fingerprint element in generated algebra is singular" kernel : L V R := nullSpace x -- the first number is the maximal number of one dimensional -- subspaces of the kernel, the second is a user given -- constant numberOfOneDimSubspacesInKernel : I := (q**(#kernel)-1)quo(q-1) numberOfTests : I := _ min(numberOfOneDimSubspacesInKernel, maxTests) for j in 1..numberOfTests repeat --we create an element in the kernel, there is a good --probability for it to generate a proper submodule, the --called "split" does the further work: result := _ split(algebraGenerators,scanOneDimSubspaces(kernel,j)) -- we had "not null rest result" directly in the following -- if .. then, but the statment there foundResult := true -- didn't work properly foundResult := not null rest result if foundResult then leave -- inner for-loop -- finish here with result else -- no proper submodule -- we were not successfull, i.e gen. submodule was -- not proper, if the whole kernel is already scanned, -- Norton's irreducibility test is used now. if (j+1)>numberOfOneDimSubspacesInKernel then -- we know that all the cyclic submodules generated -- by all non-trivial elements of the kernel are proper. foundResult := true result : L L M R := irreducibilityTestInternal (_ algebraGenerators,x,true) leave -- inner for-loop -- here ends the inner for-loop else -- x non-singular if randomelements then messagePrint "Random element in generated algebra is non-singular" else messagePrint "Fingerprint element in generated algebra is non-singular" -- here ends the outer for-loop if not foundResult then result : L L M R := [nil()$(L M R), nil()$(L M R)] messagePrint " " messagePrint "Sorry, no result, try meatAxe(...,true)" messagePrint " or consider using an extension field." result meatAxe (algebraGenerators) == meatAxe(algebraGenerators, false, 25, 7) meatAxe (algebraGenerators: L M R, randomElements?: Boolean) == randomElements? => meatAxe (algebraGenerators, true, 25, 7) meatAxe(algebraGenerators, false, 6, 7) meatAxe (algebraGenerators:L M R, numberOfTries:PI) == meatAxe (algebraGenerators, true, numberOfTries, 7) scanOneDimSubspaces(basis,n) == -- "dimension" of subspace generated by "basis" dim : NNI := #basis -- "dimension of the whole space: nn : NNI := #(basis.1) q : NNI := size()$R -- number of all one-dimensional subspaces: nred : I := n rem ((q**dim -1) quo (q-1)) pos : I := nred i : I := 0 for i in 0..dim-1 while nred >= 0 repeat pos := nred nred := nred - (q**i) i := if i = 0 then 0 else i-1 coefficients : V R := new(dim,0$R) coefficients.(dim-i) := 1$R iR : L I := wholeRagits(pos::RADIX q) for j in 1..(maxIndex iR) repeat coefficients.(dim-((#iR)::I) +j) := index((iR.j+(q::I))::PI)$R result : V R := new(nn,0) for i in 1..maxIndex coefficients repeat newAdd : V R := coefficients.i * basis.i for j in 1..nn repeat result.j := result.j + newAdd.j result @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package REP2 RepresentationPackage2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}