\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra rep1.spad} \author{Holger Gollan, Johannes Grabmeier, Thorsten Werther} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package REP1 RepresentationPackage1} <<package REP1 RepresentationPackage1>>= )abbrev package REP1 RepresentationPackage1 ++ Authors: Holger Gollan, Johannes Grabmeier, Thorsten Werther ++ Date Created: 12 September 1987 ++ Date Last Updated: 24 May 1991 ++ Basic Operations: antisymmetricTensors,symmetricTensors, ++ tensorProduct, permutationRepresentation ++ Related Constructors: RepresentationPackage1, Permutation ++ Also See: IrrRepSymNatPackage ++ AMS Classifications: ++ Keywords: representation, symmetrization, tensor product ++ References: ++ G. James, A. Kerber: The Representation Theory of the Symmetric ++ Group. Encycl. of Math. and its Appl. Vol 16., Cambr. Univ Press 1981; ++ J. Grabmeier, A. Kerber: The Evaluation of Irreducible ++ Polynomial Representations of the General Linear Groups ++ and of the Unitary Groups over Fields of Characteristic 0, ++ Acta Appl. Math. 8 (1987), 271-291; ++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and ++ their Realization in the Computer Algebra System Scratchpad, ++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23 ++ Description: ++ RepresentationPackage1 provides functions for representation theory ++ for finite groups and algebras. ++ The package creates permutation representations and uses tensor products ++ and its symmetric and antisymmetric components to create new ++ representations of larger degree from given ones. ++ Note: instead of having parameters from \spadtype{Permutation} ++ this package allows list notation of permutations as well: ++ e.g. \spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3. RepresentationPackage1(R): public == private where R : Ring OF ==> OutputForm NNI ==> NonNegativeInteger PI ==> PositiveInteger I ==> Integer L ==> List M ==> Matrix P ==> Polynomial SM ==> SquareMatrix V ==> Vector ICF ==> IntegerCombinatoricFunctions Integer SGCF ==> SymmetricGroupCombinatoricFunctions PERM ==> Permutation public ==> with if R has commutative("*") then antisymmetricTensors : (M R,PI) -> M R ++ antisymmetricTensors(a,n) applies to the square matrix ++ {\em a} the irreducible, polynomial representation of the ++ general linear group {\em GLm}, where m is the number of ++ rows of {\em a}, which corresponds to the partition ++ {\em (1,1,...,1,0,0,...,0)} of n. ++ Error: if n is greater than m. ++ Note: this corresponds to the symmetrization of the representation ++ with the sign representation of the symmetric group {\em Sn}. ++ The carrier spaces of the representation are the antisymmetric ++ tensors of the n-fold tensor product. if R has commutative("*") then antisymmetricTensors : (L M R, PI) -> L M R ++ antisymmetricTensors(la,n) applies to each ++ m-by-m square matrix in ++ the list {\em la} the irreducible, polynomial representation ++ of the general linear group {\em GLm} ++ which corresponds ++ to the partition {\em (1,1,...,1,0,0,...,0)} of n. ++ Error: if n is greater than m. ++ Note: this corresponds to the symmetrization of the representation ++ with the sign representation of the symmetric group {\em Sn}. ++ The carrier spaces of the representation are the antisymmetric ++ tensors of the n-fold tensor product. createGenericMatrix : NNI -> M P R ++ createGenericMatrix(m) creates a square matrix of dimension k ++ whose entry at the i-th row and j-th column is the ++ indeterminate {\em x[i,j]} (double subscripted). symmetricTensors : (M R, PI) -> M R ++ symmetricTensors(a,n) applies to the m-by-m ++ square matrix {\em a} the ++ irreducible, polynomial representation of the general linear ++ group {\em GLm} ++ which corresponds to the partition {\em (n,0,...,0)} of n. ++ Error: if {\em a} is not a square matrix. ++ Note: this corresponds to the symmetrization of the representation ++ with the trivial representation of the symmetric group {\em Sn}. ++ The carrier spaces of the representation are the symmetric ++ tensors of the n-fold tensor product. symmetricTensors : (L M R, PI) -> L M R ++ symmetricTensors(la,n) applies to each m-by-m square matrix in the ++ list {\em la} the irreducible, polynomial representation ++ of the general linear group {\em GLm} ++ which corresponds ++ to the partition {\em (n,0,...,0)} of n. ++ Error: if the matrices in {\em la} are not square matrices. ++ Note: this corresponds to the symmetrization of the representation ++ with the trivial representation of the symmetric group {\em Sn}. ++ The carrier spaces of the representation are the symmetric ++ tensors of the n-fold tensor product. tensorProduct : (M R, M R) -> M R ++ tensorProduct(a,b) calculates the Kronecker product ++ of the matrices {\em a} and b. ++ Note: if each matrix corresponds to a group representation ++ (repr. of generators) of one group, then these matrices ++ correspond to the tensor product of the two representations. tensorProduct : (L M R, L M R) -> L M R ++ tensorProduct([a1,...,ak],[b1,...,bk]) calculates the list of ++ Kronecker products of the matrices {\em ai} and {\em bi} ++ for {1 <= i <= k}. ++ Note: If each list of matrices corresponds to a group representation ++ (repr. of generators) of one group, then these matrices ++ correspond to the tensor product of the two representations. tensorProduct : M R -> M R ++ tensorProduct(a) calculates the Kronecker product ++ of the matrix {\em a} with itself. tensorProduct : L M R -> L M R ++ tensorProduct([a1,...ak]) calculates the list of ++ Kronecker products of each matrix {\em ai} with itself ++ for {1 <= i <= k}. ++ Note: If the list of matrices corresponds to a group representation ++ (repr. of generators) of one group, then these matrices correspond ++ to the tensor product of the representation with itself. permutationRepresentation : (PERM I, I) -> M I ++ permutationRepresentation(pi,n) returns the matrix ++ {\em (deltai,pi(i))} (Kronecker delta) for a permutation ++ {\em pi} of {\em {1,2,...,n}}. permutationRepresentation : L I -> M I ++ permutationRepresentation(pi,n) returns the matrix ++ {\em (deltai,pi(i))} (Kronecker delta) if the permutation ++ {\em pi} is in list notation and permutes {\em {1,2,...,n}}. permutationRepresentation : (L PERM I, I) -> L M I ++ permutationRepresentation([pi1,...,pik],n) returns the list ++ of matrices {\em [(deltai,pi1(i)),...,(deltai,pik(i))]} ++ (Kronecker delta) for the permutations {\em pi1,...,pik} ++ of {\em {1,2,...,n}}. permutationRepresentation : L L I -> L M I ++ permutationRepresentation([pi1,...,pik],n) returns the list ++ of matrices {\em [(deltai,pi1(i)),...,(deltai,pik(i))]} ++ if the permutations {\em pi1},...,{\em pik} are in ++ list notation and are permuting {\em {1,2,...,n}}. private ==> add -- import of domains and packages import OutputForm -- declaration of local functions: calcCoef : (L I, M I) -> I -- calcCoef(beta,C) calculates the term -- |S(beta) gamma S(alpha)| / |S(beta)| invContent : L I -> V I -- invContent(alpha) calculates the weak monoton function f with -- f : m -> n with invContent alpha. f is stored in the returned -- vector -- definition of local functions calcCoef(beta,C) == prod : I := 1 for i in 1..maxIndex beta repeat prod := prod * multinomial(beta(i), entries row(C,i))$ICF prod invContent(alpha) == n : NNI := (+/alpha)::NNI f : V I := new(n,0) i : NNI := 1 j : I := - 1 for og in alpha repeat j := j + 1 for k in 1..og repeat f(i) := j i := i + 1 f -- exported functions: if R has commutative("*") then antisymmetricTensors ( a : M R , k : PI ) == n : NNI := nrows a k = 1 => a k > n => error("second parameter for antisymmetricTensors is too large") m : I := binomial(n,k)$ICF il : L L I := [subSet(n,k,i)$SGCF for i in 0..m-1] b : M R := zero(m::NNI, m::NNI) for i in 1..m repeat for j in 1..m repeat c : M R := zero(k,k) lr: L I := il.i lt: L I := il.j for r in 1..k repeat for t in 1..k repeat rr : I := lr.r tt : I := lt.t --c.r.t := a.(1+rr).(1+tt) setelt(c,r,t,elt(a, 1+rr, 1+tt)) setelt(b, i, j, determinant c) b if R has commutative("*") then antisymmetricTensors(la: L M R, k: PI) == [antisymmetricTensors(ma,k) for ma in la] symmetricTensors (a : M R, n : PI) == m : NNI := nrows a m ~= ncols a => error("Input to symmetricTensors is no square matrix") n = 1 => a dim : NNI := (binomial(m+n-1,n)$ICF)::NNI c : M R := new(dim,dim,0) f : V I := new(n,0) g : V I := new(n,0) nullMatrix : M I := new(1,1,0) colemanMatrix : M I for i in 1..dim repeat -- unrankImproperPartitions1 starts counting from 0 alpha := unrankImproperPartitions1(n,m,i-1)$SGCF f := invContent(alpha) for j in 1..dim repeat -- unrankImproperPartitions1 starts counting from 0 beta := unrankImproperPartitions1(n,m,j-1)$SGCF g := invContent(beta) colemanMatrix := nextColeman(alpha,beta,nullMatrix)$SGCF while colemanMatrix ~= nullMatrix repeat gamma := inverseColeman(alpha,beta,colemanMatrix)$SGCF help : R := calcCoef(beta,colemanMatrix)::R for k in 1..n repeat help := help * a( (1+f k)::NNI, (1+g(gamma k))::NNI ) c(i,j) := c(i,j) + help colemanMatrix := nextColeman(alpha,beta,colemanMatrix)$SGCF -- end of while -- end of j-loop -- end of i-loop c symmetricTensors(la : L M R, k : PI) == [symmetricTensors (ma, k) for ma in la] tensorProduct(a: M R, b: M R) == n : NNI := nrows a m : NNI := nrows b nc : NNI := ncols a mc : NNI := ncols b c : M R := zero(n * m, nc * mc) indexr : NNI := 1 -- row index for i in 1..n repeat for k in 1..m repeat indexc : NNI := 1 -- column index for j in 1..nc repeat for l in 1..mc repeat c(indexr,indexc) := a(i,j) * b(k,l) indexc := indexc + 1 indexr := indexr + 1 c tensorProduct (la: L M R, lb: L M R) == [tensorProduct(la.i, lb.i) for i in 1..maxIndex la] tensorProduct(a : M R) == tensorProduct(a, a) tensorProduct(la : L M R) == tensorProduct(la :: L M R, la :: L M R) permutationRepresentation (p : PERM I, n : I) == -- permutations are assumed to permute {1,2,...,n} a : M I := zero(n :: NNI, n :: NNI) for i in 1..n repeat a(p.i,i) := 1 a permutationRepresentation (p : L I) == -- permutations are assumed to permute {1,2,...,n} n : I := #p a : M I := zero(n::NNI, n::NNI) for i in 1..n repeat a(p.i,i) := 1 a permutationRepresentation(listperm : L PERM I, n : I) == -- permutations are assumed to permute {1,2,...,n} [permutationRepresentation(perm, n) for perm in listperm] permutationRepresentation (listperm : L L I) == -- permutations are assumed to permute {1,2,...,n} [permutationRepresentation perm for perm in listperm] createGenericMatrix(m) == res : M P R := new(m,m,0$(P R)) for i in 1..m repeat for j in 1..m repeat iof : OF := coerce(i)$Integer jof : OF := coerce(j)$Integer le : L OF := cons(iof,list jof) sy : Symbol := subscript(x::Symbol, le)$Symbol res(i,j) := (sy :: P R) res @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package REP1 RepresentationPackage1>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}