\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra reclos.spad} \author{Renaud Rioboo} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject This file describes the Real Closure 1.0 package which consists of different packages, categoris and domains : - the package RealPolynomialUtilitiesPackage whichs receives a field and a univariate polynomial domain with coefficients in the field. It computes some simple functions such as Strum and Sylvester sequences. - The category RealRootCharacterizationCategory provides abstarct functionalities to work with "real roots" of univariate polynomials. These resemble variables with some functionalities needed to compute important operations. - RealClosedField is a category with provides comon operations available over real closed fiels. These include finding all the roots of univariate polynomial, taking square roots, ... - The domain RightOpenIntervalRootCharacterization is the main code that provides the functionalities of RealRootCharacterizationCategory for the case of archimedean fileds. Abstract roots are encoded with a left closed right open interval containing the root together with a defining polynomial for the root. - The RealClosure domain is the end-user code, it provides usual arithmetics with real algebraic numbers, along with the functionalities of a real closed field. It also provides functions to approximate a real algebraic number by an element of the base field. This approximation may either be absolute (approximate) or relative (realtivApprox). CAVEEATS Since real algebraic expressions are stored as depending on "real roots" which are managed like variables, there is an ordering on these. This ordering is dynamical in the sense that any new algebraic takes precedence over older ones. In particular every cretaion function raises a new "real root". This has the effect that when you type something like sqrt(2) + sqrt(2) you have two new variables which happen to be equal. To avoid this name the expression such as in s2 := sqrt(2) ; s2 + s2 Also note that computing times depend strongly on the ordering you implicitly provide. Please provide algebraics in the order which most natural to you. LIMITATIONS The file reclos.input show some basic use of the package. This packages uses algorithms which are published in [1] and [2] which are based on field arithmetics, inparticular for polynomial gcd related algorithms. This can be quite slow for high degree polynomials and subresultants methods usually work best. Betas versions of the package try to use these techniques in a better way and work significantly faster. These are mostly based on unpublished algorithms and cannot be distributed. Please contact the author if you have a particular problem to solve or want to use these versions. Be aware that approximations behave as post-processing and that all computations are done excatly. They can thus be quite time consuming when depending on several "real roots". \section{package POLUTIL RealPolynomialUtilitiesPackage} <<package POLUTIL RealPolynomialUtilitiesPackage>>= )abbrev package POLUTIL RealPolynomialUtilitiesPackage ++ Author: Renaud Rioboo ++ Date Created: summer 1992 ++ Basic Functions: provides polynomial utilities ++ Related Constructors: RealClosure, ++ Date Last Updated: July 2004 ++ Also See: ++ AMS Classifications: ++ Keywords: Sturm sequences ++ References: ++ Description: ++ \axiomType{RealPolynomialUtilitiesPackage} provides common functions used ++ by interval coding. RealPolynomialUtilitiesPackage(TheField,ThePols) : PUB == PRIV where TheField : Field ThePols : UnivariatePolynomialCategory(TheField) Z ==> Integer N ==> NonNegativeInteger P ==> ThePols PUB == with sylvesterSequence : (ThePols,ThePols) -> List ThePols ++ \axiom{sylvesterSequence(p,q)} is the negated remainder sequence ++ of p and q divided by the last computed term sturmSequence : ThePols -> List ThePols ++ \axiom{sturmSequence(p) = sylvesterSequence(p,p')} if TheField has OrderedRing then boundOfCauchy : ThePols -> TheField ++ \axiom{boundOfCauchy(p)} bounds the roots of p sturmVariationsOf : List TheField -> N ++ \axiom{sturmVariationsOf(l)} is the number of sign variations ++ in the list of numbers l, ++ note that the first term counts as a sign lazyVariations : (List(TheField), Z, Z) -> N ++ \axiom{lazyVariations(l,s1,sn)} is the number of sign variations ++ in the list of non null numbers [s1::l]@sn, PRIV == add sturmSequence(p) == sylvesterSequence(p,differentiate(p)) sylvesterSequence(p1,p2) == res : List(ThePols) := [p1] while (p2 ~= 0) repeat res := cons(p2 , res) (p1 , p2) := (p2 , -(p1 rem p2)) if degree(p1) > 0 then p1 := unitCanonical(p1) res := [ term quo p1 for term in res ] reverse! res if TheField has OrderedRing then boundOfCauchy(p) == c :TheField := inv(leadingCoefficient(p)) l := [ c*term for term in rest(coefficients(p))] null(l) => 1 1 + ("max" / [ abs(t) for t in l ]) -- sturmVariationsOf(l) == -- res : N := 0 -- lsg := sign(first(l)) -- for term in l repeat -- if ^( (sg := sign(term) ) = 0 ) then -- if (sg ~= lsg) then res := res + 1 -- lsg := sg -- res sturmVariationsOf(l) == null(l) => error "POLUTIL: sturmVariationsOf: empty list !" l1 := first(l) -- first 0 counts as a sign ll : List(TheField) := [] for term in rest(l) repeat -- zeros don't count if not(zero?(term)) then ll := cons(term,ll) -- if l1 is not zero then ll = reverse(l) null(ll) => error "POLUTIL: sturmVariationsOf: Bad sequence" ln := first(ll) ll := reverse(rest(ll)) -- if l1 is not zero then first(l) = first(ll) -- if l1 is zero then first zero should count as a sign zero?(l1) => 1 + lazyVariations(rest(ll),sign(first(ll)),sign(ln)) lazyVariations(ll, sign(l1), sign(ln)) lazyVariations(l,sl,sh) == zero?(sl) or zero?(sh) => error "POLUTIL: lazyVariations: zero sign!" null(l) => if sl = sh then 0 else 1 null(rest(l)) => if zero?(first(l)) then error "POLUTIL: lazyVariations: zero sign!" else if sl = sh then if (sl = sign(first(l))) then 0 else 2 -- in this case we save one test else 1 s := sign(l.2) lazyVariations([first(l)],sl,s) + lazyVariations(rest(rest(l)),s,sh) @ \section{category RRCC RealRootCharacterizationCategory} <<category RRCC RealRootCharacterizationCategory>>= )abbrev category RRCC RealRootCharacterizationCategory ++ Author: Renaud Rioboo ++ Date Created: summer 1992 ++ Date Last Updated: January 2004 ++ Basic Functions: provides operations with generic real roots of ++ polynomials ++ Related Constructors: RealClosure, RightOpenIntervalRootCharacterization ++ Also See: ++ AMS Classifications: ++ Keywords: Real Algebraic Numbers ++ References: ++ Description: ++ \axiomType{RealRootCharacterizationCategory} provides common acces ++ functions for all real root codings. RealRootCharacterizationCategory(TheField, ThePols ) : Category == PUB where TheField : Join(OrderedRing, Field) ThePols : UnivariatePolynomialCategory(TheField) Z ==> Integer N ==> PositiveInteger PUB ==> SetCategory with sign: ( ThePols, $ ) -> Z ++ \axiom{sign(pol,aRoot)} gives the sign of \axiom{pol} ++ interpreted as \axiom{aRoot} zero? : ( ThePols, $ ) -> Boolean ++ \axiom{zero?(pol,aRoot)} answers if \axiom{pol} ++ interpreted as \axiom{aRoot} is \axiom{0} negative?: ( ThePols, $ ) -> Boolean ++ \axiom{negative?(pol,aRoot)} answers if \axiom{pol} ++ interpreted as \axiom{aRoot} is negative positive?: ( ThePols, $ ) -> Boolean ++ \axiom{positive?(pol,aRoot)} answers if \axiom{pol} ++ interpreted as \axiom{aRoot} is positive recip: ( ThePols, $ ) -> Union(ThePols,"failed") ++ \axiom{recip(pol,aRoot)} tries to inverse \axiom{pol} ++ interpreted as \axiom{aRoot} definingPolynomial: $ -> ThePols ++ \axiom{definingPolynomial(aRoot)} gives a polynomial ++ such that \axiom{definingPolynomial(aRoot).aRoot = 0} allRootsOf: ThePols -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots of \axiom{pol} ++ in the Real Closure, assumed in order. rootOf: ( ThePols, N ) -> Union($,"failed") ++ \axiom{rootOf(pol,n)} gives the nth root for the order of the ++ Real Closure approximate : (ThePols,$,TheField) -> TheField ++ \axiom{approximate(term,root,prec)} gives an approximation ++ of \axiom{term} over \axiom{root} with precision \axiom{prec} relativeApprox : (ThePols,$,TheField) -> TheField ++ \axiom{approximate(term,root,prec)} gives an approximation ++ of \axiom{term} over \axiom{root} with precision \axiom{prec} add zero?(toTest, rootChar) == sign(toTest, rootChar) = 0 negative?(toTest, rootChar) == sign(toTest, rootChar) < 0 positive?(toTest, rootChar) == sign(toTest, rootChar) > 0 rootOf(pol,n) == liste:List($):= allRootsOf(pol) # liste > n => "failed" liste.n recip(toInv,rootChar) == degree(toInv) = 0 => res := recip(leadingCoefficient(toInv)) if (res case "failed") then "failed" else (res::TheField::ThePols) defPol := definingPolynomial(rootChar) d := principalIdeal([defPol,toInv]) zero?(d.generator,rootChar) => "failed" if (degree(d.generator) ~= 0 ) then defPol := (defPol exquo (d.generator))::ThePols d := principalIdeal([defPol,toInv]) d.coef.2 @ \section{category RCFIELD RealClosedField} <<category RCFIELD RealClosedField>>= )abbrev category RCFIELD RealClosedField ++ Author: Renaud Rioboo ++ Date Created: may 1993 ++ Date Last Updated: January 2004 ++ Basic Functions: provides computations with generic real roots of ++ polynomials ++ Related Constructors: SimpleOrderedAlgebraicExtension, RealClosure ++ Also See: ++ AMS Classifications: ++ Keywords: Real Algebraic Numbers ++ References: ++ Description: ++ \axiomType{RealClosedField} provides common acces ++ functions for all real closed fields. RealClosedField : Category == PUB where E ==> OutputForm SUP ==> SparseUnivariatePolynomial OFIELD ==> Join(OrderedRing,Field) PME ==> SUP($) N ==> NonNegativeInteger PI ==> PositiveInteger RN ==> Fraction(Integer) Z ==> Integer POLY ==> Polynomial PACK ==> SparseUnivariatePolynomialFunctions2 PUB == Join(CharacteristicZero, OrderedRing, CommutativeRing, Field, FullyRetractableTo(Fraction(Integer)), Algebra Integer, Algebra(Fraction(Integer)), RadicalCategory) with mainForm : $ -> Union(E,"failed") ++ \axiom{mainForm(x)} is the main algebraic quantity name of ++ \axiom{x} mainDefiningPolynomial : $ -> Union(PME,"failed") ++ \axiom{mainDefiningPolynomial(x)} is the defining ++ polynomial for the main algebraic quantity of \axiom{x} mainValue : $ -> Union(PME,"failed") ++ \axiom{mainValue(x)} is the expression of \axiom{x} in terms ++ of \axiom{SparseUnivariatePolynomial($)} rootOf: (PME,PI,E) -> Union($,"failed") ++ \axiom{rootOf(pol,n,name)} creates the nth root for the order ++ of \axiom{pol} and names it \axiom{name} rootOf: (PME,PI) -> Union($,"failed") ++ \axiom{rootOf(pol,n)} creates the nth root for the order ++ of \axiom{pol} and gives it unique name allRootsOf: PME -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely allRootsOf: (SUP(RN)) -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely allRootsOf: (SUP(Z)) -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely allRootsOf: (POLY($)) -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely allRootsOf: (POLY(RN)) -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely allRootsOf: (POLY(Z)) -> List $ ++ \axiom{allRootsOf(pol)} creates all the roots ++ of \axiom{pol} naming each uniquely sqrt: ($,PI) -> $ ++ \axiom{sqrt(x,n)} is \axiom{x ** (1/n)} sqrt: $ -> $ ++ \axiom{sqrt(x)} is \axiom{x ** (1/2)} sqrt: RN -> $ ++ \axiom{sqrt(x)} is \axiom{x ** (1/2)} sqrt: Z -> $ ++ \axiom{sqrt(x)} is \axiom{x ** (1/2)} rename! : ($,E) -> $ ++ \axiom{rename!(x,name)} changes the way \axiom{x} is printed rename : ($,E) -> $ ++ \axiom{rename(x,name)} gives a new number that prints as name approximate: ($,$) -> RN ++ \axiom{approximate(n,p)} gives an approximation of \axiom{n} ++ that has precision \axiom{p} add sqrt(a:$):$ == sqrt(a,2) sqrt(a:RN):$ == sqrt(a::$,2) sqrt(a:Z):$ == sqrt(a::$,2) characteristic == 0 rootOf(pol,n,o) == r := rootOf(pol,n) r case "failed" => "failed" rename!(r,o) rootOf(pol,n) == liste:List($):= allRootsOf(pol) # liste > n => "failed" liste.n sqrt(x,n) == n = 1 => x zero?(x) => 0 one?(x) => 1 if odd?(n) then r := rootOf(monomial(1,n) - (x :: PME), 1) else r := rootOf(monomial(1,n) - (x :: PME), 2) r case "failed" => error "no roots" n = 2 => rename(r,root(x::E)$E) rename(r,root(x :: E, n :: E)$E) (x : $) ** (rn : RN) == sqrt(x**numer(rn),denom(rn)::PI) nthRoot(x, n) == zero?(n) => x negative?(n) => inv(sqrt(x,(-n) :: PI)) sqrt(x,n :: PI) allRootsOf(p:SUP(RN)) == allRootsOf(map(#1 :: $ ,p)$PACK(RN,$)) allRootsOf(p:SUP(Z)) == allRootsOf(map(#1 :: $ ,p)$PACK(Z,$)) allRootsOf(p:POLY($)) == allRootsOf(univariate(p)) allRootsOf(p:POLY(RN)) == allRootsOf(univariate(p)) allRootsOf(p:POLY(Z)) == allRootsOf(univariate(p)) @ \section{domain ROIRC RightOpenIntervalRootCharacterization} \subsection{makeChar performance problem} The following lines of code, which check for a possible error, cause major performance problems and were removed by Renaud Rioboo, the original author. They were originally inserted for debugging. \begin{verbatim} right <= left => error "ROIRC: makeChar: Bad interval" (pol.left * pol.right) > 0 => error "ROIRC: makeChar: Bad pol" \end{verbatim} <<performance problem>>= @ <<domain ROIRC RightOpenIntervalRootCharacterization>>= )abbrev domain ROIRC RightOpenIntervalRootCharacterization ++ Author: Renaud Rioboo ++ Date Created: summer 1992 ++ Date Last Updated: January 2004 ++ Basic Functions: provides computations with real roots of olynomials ++ Related Constructors: RealRootCharacterizationCategory, RealClosure ++ Also See: ++ AMS Classifications: ++ Keywords: Real Algebraic Numbers ++ References: ++ Description: ++ \axiomType{RightOpenIntervalRootCharacterization} provides work with ++ interval root coding. RightOpenIntervalRootCharacterization(TheField,ThePolDom) : PUB == PRIV where TheField : Join(OrderedRing,Field) ThePolDom : UnivariatePolynomialCategory(TheField) Z ==> Integer P ==> ThePolDom N ==> NonNegativeInteger B ==> Boolean UTIL ==> RealPolynomialUtilitiesPackage(TheField,ThePolDom) RRCC ==> RealRootCharacterizationCategory O ==> OutputForm TwoPoints ==> Record(low:TheField , high:TheField) PUB == RealRootCharacterizationCategory(TheField, ThePolDom) with left : $ -> TheField ++ \axiom{left(rootChar)} is the left bound of the isolating ++ interval right : $ -> TheField ++ \axiom{right(rootChar)} is the right bound of the isolating ++ interval size : $ -> TheField ++ The size of the isolating interval middle : $ -> TheField ++ \axiom{middle(rootChar)} is the middle of the isolating ++ interval refine : $ -> $ ++ \axiom{refine(rootChar)} shrinks isolating interval around ++ \axiom{rootChar} mightHaveRoots : (P,$) -> B ++ \axiom{mightHaveRoots(p,r)} is false if \axiom{p.r} is not 0 relativeApprox : (P,$,TheField) -> TheField ++ \axiom{relativeApprox(exp,c,p) = a} is relatively close to exp ++ as a polynomial in c ip to precision p PRIV == add -- local functions makeChar: (TheField,TheField,ThePolDom) -> $ refine! : $ -> $ sturmIsolate : (List(P), TheField, TheField,N,N) -> List TwoPoints isolate : List(P) -> List TwoPoints rootBound : P -> TheField -- varStar : P -> N linearRecip : ( P , $) -> Union(P, "failed") linearZero? : (TheField,$) -> B linearSign : (P,$) -> Z sturmNthRoot : (List(P), TheField, TheField,N,N,N) -> Union(TwoPoints,"failed") addOne : P -> P minus : P -> P translate : (P,TheField) -> P dilate : (P,TheField) -> P invert : P -> P evalOne : P -> TheField hasVarsl: List(TheField) -> B hasVars: P -> B -- Representation Rep:= Record(low:TheField,high:TheField,defPol:ThePolDom) -- and now the code ! size(rootCode) == rootCode.high - rootCode.low relativeApprox(pval,rootCode,prec) == -- beurk ! dPol := rootCode.defPol degree(dPol) = 1 => c := -coefficient(dPol,0)/leadingCoefficient(dPol) pval.c pval := pval rem dPol degree(pval) = 0 => leadingCoefficient(pval) zero?(pval,rootCode) => 0 while mightHaveRoots(pval,rootCode) repeat rootCode := refine(rootCode) dpval := differentiate(pval) degree(dpval) = 0 => l := left(rootCode) r := right(rootCode) a := pval.l b := pval.r while ( abs(2*(a-b)/(a+b)) > prec ) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) a := pval.l b := pval.r (a+b)/(2::TheField) zero?(dpval,rootCode) => relativeApprox(pval, [left(rootCode), right(rootCode), gcd(dpval,rootCode.defPol)]$Rep, prec) while mightHaveRoots(dpval,rootCode) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) a := pval.l b := pval.r while ( abs(2*(a-b)/(a+b)) > prec ) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) a := pval.l b := pval.r (a+b)/(2::TheField) approximate(pval,rootCode,prec) == -- glurp dPol := rootCode.defPol degree(dPol) = 1 => c := -coefficient(dPol,0)/leadingCoefficient(dPol) pval.c pval := pval rem dPol degree(pval) = 0 => leadingCoefficient(pval) dpval := differentiate(pval) a : TheField b : TheField degree(dpval) = 0 => l := left(rootCode) r := right(rootCode) while ( abs((a := pval.l) - (b := pval.r)) > prec ) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) (a+b)/(2::TheField) zero?(dpval,rootCode) => approximate(pval, [left(rootCode), right(rootCode), gcd(dpval,rootCode.defPol)]$Rep, prec) while mightHaveRoots(dpval,rootCode) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) while ( abs((a := pval.l) - (b := pval.r)) > prec ) repeat rootCode := refine(rootCode) l := left(rootCode) r := right(rootCode) (a+b)/(2::TheField) addOne(p) == p.(monomial(1,1)+(1::P)) minus(p) == p.(monomial(-1,1)) translate(p,a) == p.(monomial(1,1)+(a::P)) dilate(p,a) == p.(monomial(a,1)) evalOne(p) == "+" / coefficients(p) invert(p) == d := degree(p) mapExponents((d-#1)::N, p) rootBound(p) == res : TheField := 1 raw :TheField := 1+boundOfCauchy(p)$UTIL while (res < raw) repeat res := 2*(res) res sturmNthRoot(lp,l,r,vl,vr,n) == nv := (vl - vr)::N nv < n => "failed" ((nv = 1) and (n = 1)) => [l,r] int := (l+r)/(2::TheField) lt:List(TheField):=[] for t in lp repeat lt := cons(t.int , lt) vi := sturmVariationsOf(reverse! lt)$UTIL o :Z := n - vl + vi if o > 0 then sturmNthRoot(lp,int,r,vi,vr,o::N) else sturmNthRoot(lp,l,int,vl,vi,n) sturmIsolate(lp,l,r,vl,vr) == r <= l => error "ROIRC: sturmIsolate: bad bounds" n := (vl - vr)::N zero?(n) => [] one?(n) => [[l,r]] int := (l+r)/(2::TheField) vi := sturmVariationsOf( [t.int for t in lp ] )$UTIL append(sturmIsolate(lp,l,int,vl,vi),sturmIsolate(lp,int,r,vi,vr)) isolate(lp) == b := rootBound(first(lp)) l1,l2 : List(TheField) (l1,l2) := ([] , []) for t in reverse(lp) repeat if odd?(degree(t)) then (l1,l2):= (cons(-leadingCoefficient(t),l1), cons(leadingCoefficient(t),l2)) else (l1,l2):= (cons(leadingCoefficient(t),l1), cons(leadingCoefficient(t),l2)) sturmIsolate(lp, -b, b, sturmVariationsOf(l1)$UTIL, sturmVariationsOf(l2)$UTIL) rootOf(pol,n) == ls := sturmSequence(pol)$UTIL pol := unitCanonical(first(ls)) -- this one is SqFR degree(pol) = 0 => "failed" numberOfMonomials(pol) = 1 => ([0,1,monomial(1,1)]$Rep)::$ b := rootBound(pol) l1,l2 : List(TheField) (l1,l2) := ([] , []) for t in reverse(ls) repeat if odd?(degree(t)) then (l1,l2):= (cons(leadingCoefficient(t),l1), cons(-leadingCoefficient(t),l2)) else (l1,l2):= (cons(leadingCoefficient(t),l1), cons(leadingCoefficient(t),l2)) res := sturmNthRoot(ls, -b, b, sturmVariationsOf(l2)$UTIL, sturmVariationsOf(l1)$UTIL, n) res case "failed" => "failed" makeChar(res.low,res.high,pol) allRootsOf(pol) == ls := sturmSequence(unitCanonical pol)$UTIL pol := unitCanonical(first(ls)) -- this one is SqFR degree(pol) = 0 => [] numberOfMonomials(pol) = 1 => [[0,1,monomial(1,1)]$Rep] [ makeChar(term.low,term.high,pol) for term in isolate(ls) ] hasVarsl(l:List(TheField)) == null(l) => false f := sign(first(l)) for term in rest(l) repeat if f*term < 0 then return(true) false hasVars(p:P) == zero?(p) => error "ROIRC: hasVars: null polynonial" zero?(coefficient(p,0)) => true hasVarsl(coefficients(p)) mightHaveRoots(p,rootChar) == a := rootChar.low q := translate(p,a) not(hasVars(q)) => false -- varStar(q) = 0 => false a := (rootChar.high) - a q := dilate(q,a) sign(coefficient(q,0))*sign(evalOne(q)) <= 0 => true q := minus(addOne(q)) not(hasVars(q)) => false -- varStar(q) = 0 => false q := invert(q) hasVars(addOne(q)) -- ^(varStar(addOne(q)) = 0) coerce(rootChar:$):O == commaSeparate([ hconcat("[" :: O , (rootChar.low)::O), hconcat((rootChar.high)::O,"[" ::O ) ]) c1 = c2 == mM := max(c1.low,c2.low) Mm := min(c1.high,c2.high) mM >= Mm => false rr : ThePolDom := gcd(c1.defPol,c2.defPol) degree(rr) = 0 => false sign(rr.mM) * sign(rr.Mm) <= 0 makeChar(left,right,pol) == <<performance problem>> res :$ := [left,right,leadingMonomial(pol)+reductum(pol)]$Rep -- safe copy while zero?(pol.(res.high)) repeat refine!(res) while (res.high * res.low < 0 ) repeat refine!(res) zero?(pol.(res.low)) => [res.low,res.high,monomial(1,1)-(res.low)::P] res definingPolynomial(rootChar) == rootChar.defPol linearRecip(toTest,rootChar) == c := - inv(leadingCoefficient(toTest)) * coefficient(toTest,0) r := recip(rootChar.defPol.c) if (r case "failed") then if (c - rootChar.low) * (c - rootChar.high) <= 0 then "failed" else newPol := (rootChar.defPol exquo toTest)::P ((1$ThePolDom - inv(newPol.c)*newPol) exquo toTest)::P else ((1$ThePolDom - (r::TheField)*rootChar.defPol) exquo toTest)::P recip(toTest,rootChar) == degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) => error "IRC: recip: Not reduced" degree(rootChar.defPol) = 1 => error "IRC: recip: Linear Defining Polynomial" degree(toTest) = 1 => linearRecip(toTest, rootChar) d := extendedEuclidean((rootChar.defPol),toTest) (degree(d.generator) = 0 ) => d.coef2 d.generator := unitCanonical(d.generator) (d.generator.(rootChar.low) * d.generator.(rootChar.high)<= 0) => "failed" newPol := (rootChar.defPol exquo (d.generator))::P degree(newPol) = 1 => c := - inv(leadingCoefficient(newPol)) * coefficient(newPol,0) inv(toTest.c)::P degree(toTest) = 1 => c := - coefficient(toTest,0)/ leadingCoefficient(toTest) ((1$ThePolDom - inv(newPol.(c))*newPol) exquo toTest)::P d := extendedEuclidean(newPol,toTest) d.coef2 linearSign(toTest,rootChar) == c := - inv(leadingCoefficient(toTest)) * coefficient(toTest,0) ev := sign(rootChar.defPol.c) if zero?(ev) then if (c - rootChar.low) * (c - rootChar.high) <= 0 then 0 else sign(toTest.(rootChar.high)) else if (ev*sign(rootChar.defPol.(rootChar.high)) <= 0 ) then sign(toTest.(rootChar.high)) else sign(toTest.(rootChar.low)) sign(toTest,rootChar) == degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) => error "IRC: sign: Not reduced" degree(rootChar.defPol) = 1 => error "IRC: sign: Linear Defining Polynomial" degree(toTest) = 1 => linearSign(toTest, rootChar) s := sign(leadingCoefficient(toTest)) toTest := monomial(1,degree(toTest))+ inv(leadingCoefficient(toTest))*reductum(toTest) delta := gcd(toTest,rootChar.defPol) newChar := [rootChar.low,rootChar.high,rootChar.defPol]$Rep if degree(delta) > 0 then if sign(delta.(rootChar.low) * delta.(rootChar.high)) <= 0 then return(0) else newChar.defPol := (newChar.defPol exquo delta) :: P toTest := toTest rem (newChar.defPol) degree(toTest) = 0 => s * sign(leadingCoefficient(toTest)) degree(toTest) = 1 => s * linearSign(toTest, newChar) while mightHaveRoots(toTest,newChar) repeat newChar := refine(newChar) s*sign(toTest.(newChar.low)) linearZero?(c,rootChar) == zero?((rootChar.defPol).c) and (c - rootChar.low) * (c - rootChar.high) <= 0 zero?(toTest,rootChar) == degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) => error "IRC: zero?: Not reduced" degree(rootChar.defPol) = 1 => error "IRC: zero?: Linear Defining Polynomial" degree(toTest) = 1 => linearZero?(- inv(leadingCoefficient(toTest)) * coefficient(toTest,0), rootChar) toTest := monomial(1,degree(toTest))+ inv(leadingCoefficient(toTest))*reductum(toTest) delta := gcd(toTest,rootChar.defPol) degree(delta) = 0 => false sign(delta.(rootChar.low) * delta.(rootChar.high)) <= 0 refine!(rootChar) == -- this is not a safe function, it can work with badly created object -- we do not assume (rootChar.defPol).(rootChar.high) <> 0 int := middle(rootChar) s1 := sign((rootChar.defPol).(rootChar.low)) zero?(s1) => rootChar.high := int rootChar.defPol := monomial(1,1) - (rootChar.low)::P rootChar s2 := sign((rootChar.defPol).int) zero?(s2) => rootChar.low := int rootChar.defPol := monomial(1,1) - int::P rootChar if (s1*s2 < 0) then rootChar.high := int else rootChar.low := int rootChar refine(rootChar) == -- we assume (rootChar.defPol).(rootChar.high) <> 0 int := middle(rootChar) s:= (rootChar.defPol).int * (rootChar.defPol).(rootChar.high) zero?(s) => [int,rootChar.high,monomial(1,1)-int::P] if s < 0 then [int,rootChar.high,rootChar.defPol] else [rootChar.low,int,rootChar.defPol] left(rootChar) == rootChar.low right(rootChar) == rootChar.high middle(rootChar) == (rootChar.low + rootChar.high)/(2::TheField) -- varStar(p) == -- if 0 no roots in [0,:infty[ -- res : N := 0 -- lsg := sign(coefficient(p,0)) -- l := [ sign(i) for i in reverse!(coefficients(p))] -- for sg in l repeat -- if (sg ~= lsg) then res := res + 1 -- lsg := sg -- res @ \section{domain RECLOS RealClosure} The domain constructore {\bf RealClosure} by Renaud Rioboo (University of Paris 6, France) provides the real closure of an ordered field. The implementation is based on interval arithmetic. Moreover, the design of this constructor and its related packages allows an easy use of other codings for real algebraic numbers. ordered field <<domain RECLOS RealClosure>>= )abbrev domain RECLOS RealClosure ++ Author: Renaud Rioboo ++ Date Created: summer 1988 ++ Date Last Updated: January 2004 ++ Basic Functions: provides computations in an ordered real closure ++ Related Constructors: RightOpenIntervalRootCharacterization ++ Also See: ++ AMS Classifications: ++ Keywords: Real Algebraic Numbers ++ References: ++ Description: ++ This domain implements the real closure of an ordered field. ++ Note: ++ The code here is generic i.e. it does not depend of the way the operations ++ are done. The two macros PME and SEG should be passed as functorial ++ arguments to the domain. It does not help much to write a category ++ since non trivial methods cannot be placed there either. ++ RealClosure(TheField): PUB == PRIV where TheField : Join(OrderedRing, Field, RealConstant) -- ThePols : UnivariatePolynomialCategory($) -- PME ==> ThePols -- TheCharDom : RealRootCharacterizationCategory($, ThePols ) -- SEG ==> TheCharDom -- this does not work yet E ==> OutputForm Z ==> Integer SE ==> Symbol B ==> Boolean SUP ==> SparseUnivariatePolynomial($) N ==> PositiveInteger RN ==> Fraction Z LF ==> ListFunctions2($,N) -- ***************************************************************** -- ***************************************************************** -- PUT YOUR OWN PREFERENCE HERE -- ***************************************************************** -- ***************************************************************** PME ==> SparseUnivariatePolynomial($) SEG ==> RightOpenIntervalRootCharacterization($,PME) -- ***************************************************************** -- ***************************************************************** PUB == Join(RealClosedField, FullyRetractableTo TheField, Algebra TheField) with algebraicOf : (SEG,E) -> $ ++ \axiom{algebraicOf(char)} is the external number mainCharacterization : $ -> Union(SEG,"failed") ++ \axiom{mainCharacterization(x)} is the main algebraic ++ quantity of \axiom{x} (\axiom{SEG}) relativeApprox : ($,$) -> RN ++ \axiom{relativeApprox(n,p)} gives a relative ++ approximation of \axiom{n} ++ that has precision \axiom{p} PRIV == add -- local functions lessAlgebraic : $ -> $ newElementIfneeded : (SEG,E) -> $ -- Representation Rec := Record(seg: SEG, val:PME, outForm:E, order:N) Rep := Union(TheField,Rec) -- global (mutable) variables orderOfCreation : N := 1$N -- it is internally used to sort the algebraic levels instanceName : Symbol := new()$Symbol -- this used to print the results, thus different instanciations -- use different names -- now the code relativeApprox(nbe,prec) == nbe case TheField => retract(nbe) appr := relativeApprox(nbe.val, nbe.seg, prec) -- now appr has the good exact precision but is $ relativeApprox(appr,prec) approximate(nbe,prec) == abs(nbe) < prec => 0 nbe case TheField => retract(nbe) appr := approximate(nbe.val, nbe.seg, prec) -- now appr has the good exact precision but is $ approximate(appr,prec) newElementIfneeded(s,o) == p := definingPolynomial(s) degree(p) = 1 => - coefficient(p,0) / leadingCoefficient(p) res := [s, monomial(1,1), o, orderOfCreation ]$Rec orderOfCreation := orderOfCreation + 1 res :: $ algebraicOf(s,o) == pol := definingPolynomial(s) degree(pol) = 1 => -coefficient(pol,0) / leadingCoefficient(pol) res := [s, monomial(1,1), o, orderOfCreation ]$Rec orderOfCreation := orderOfCreation + 1 res :: $ rename!(x,o) == x.outForm := o x rename(x,o) == [x.seg, x.val, o, x.order]$Rec rootOf(pol,n) == degree(pol) = 0 => "failed" degree(pol) = 1 => if n=1 then -coefficient(pol,0) / leadingCoefficient(pol) else "failed" r := rootOf(pol,n)$SEG r case "failed" => "failed" o := hconcat(instanceName :: E , orderOfCreation :: E)$E algebraicOf(r,o) allRootsOf(pol:SUP):List($) == degree(pol)=0 => [] degree(pol)=1 => [-coefficient(pol,0) / leadingCoefficient(pol)] liste := allRootsOf(pol)$SEG res : List $ := [] for term in liste repeat o := hconcat(instanceName :: E , orderOfCreation :: E)$E res := cons(algebraicOf(term,o), res) reverse! res coerce(x:$):$ == x case TheField => x [x.seg,x.val rem$PME definingPolynomial(x.seg),x.outForm,x.order]$Rec positive?(x) == x case TheField => positive?(x)$TheField positive?(x.val,x.seg)$SEG negative?(x) == x case TheField => negative?(x)$TheField negative?(x.val,x.seg)$SEG abs(x) == sign(x)*x sign(x) == x case TheField => sign(x)$TheField sign(x.val,x.seg)$SEG x < y == positive?(y-x) x = y == zero?(x-y) mainCharacterization(x) == x case TheField => "failed" x.seg mainDefiningPolynomial(x) == x case TheField => "failed" definingPolynomial x.seg mainForm(x) == x case TheField => "failed" x.outForm mainValue(x) == x case TheField => "failed" x.val coerce(x:$):E == x case TheField => x::TheField :: E xx:$ := coerce(x) outputForm(univariate(xx.val),x.outForm)$SUP inv(x) == (res:= recip x) case "failed" => error "Division by 0" res :: $ recip(x) == x case TheField => if ((r := recip(x)$TheField) case TheField) then r::$ else "failed" if ((r := recip(x.val,x.seg)$SEG) case "failed") then "failed" else lessAlgebraic([x.seg,r::PME,x.outForm,x.order]$Rec) (n:Z * x:$):$ == x case TheField => n *$TheField x zero?(n) => 0 one?(n) => x [x.seg,map(n * #1, x.val),x.outForm,x.order]$Rec (rn:TheField * x:$):$ == x case TheField => rn *$TheField x zero?(rn) => 0 one?(rn) => x [x.seg,map(rn * #1, x.val),x.outForm,x.order]$Rec (x:$ * y:$):$ == (x case TheField) and (y case TheField) => x *$TheField y (x case TheField) => x::TheField * y -- x is no longer TheField (y case TheField) => y::TheField * x -- now both are algebraic y.order > x.order => [y.seg,map(x * #1 , y.val),y.outForm,y.order]$Rec x.order > y.order => [x.seg,map( #1 * y , x.val),x.outForm,x.order]$Rec -- now x.exp = y.exp -- we will multiply the polynomials and then reduce -- however wee need to call lessAlgebraic lessAlgebraic([x.seg, (x.val * y.val) rem definingPolynomial(x.seg), x.outForm, x.order]$Rec) nonNull(r:Rec):$ == degree(r.val)=0 => leadingCoefficient(r.val) numberOfMonomials(r.val) = 1 => r zero?(r.val,r.seg)$SEG => 0 r -- zero?(x) == -- x case TheField => zero?(x)$TheField -- zero?(x.val,x.seg)$SEG zero?(x) == x case TheField => zero?(x)$TheField false x + y == (x case TheField) and (y case TheField) => x +$TheField y (x case TheField) => if zero?(x) then y else nonNull([y.seg,x::PME+(y.val),y.outForm,y.order]$Rec) -- x is no longer TheField (y case TheField) => if zero?(y) then x else nonNull([x.seg,(x.val)+y::PME,x.outForm,x.order]$Rec) -- now both are algebraic y.order > x.order => nonNull([y.seg,x::PME+y.val,y.outForm,y.order]$Rec) x.order > y.order => nonNull([x.seg,(x.val)+y::PME,x.outForm,x.order]$Rec) -- now x.exp = y.exp -- we simply add polynomials (since degree cannot increase) -- however wee need to call lessAlgebraic nonNull([x.seg,x.val + y.val,x.outForm,x.order]) -x == x case TheField => -$TheField (x::TheField) [x.seg,-$PME x.val,x.outForm,x.order]$Rec retractIfCan(x:$):Union(TheField,"failed") == x case TheField => x o := x.order res := lessAlgebraic x res case TheField => res o = res.order => "failed" retractIfCan res retract(x:$):TheField == x case TheField => x o := x.order res := lessAlgebraic x res case TheField => res o = res.order => error "Can't retract" retract res lessAlgebraic(x) == x case TheField => x degree(x.val) = 0 => leadingCoefficient(x.val) def := definingPolynomial(x.seg) degree(def) = 1 => x.val.(- coefficient(def,0) / leadingCoefficient(def)) x 0 == (0$TheField) :: $ 1 == (1$TheField) :: $ coerce(rn:TheField):$ == rn :: $ @ \section{License} <<license>>= ----------------------------------------------------------------------------- -- This software was written by Renaud Rioboo (Computer Algebra group of -- Laboratoire d'Informatique de Paris 6) and is the property of university -- Paris 6. ----------------------------------------------------------------------------- @ <<*>>= <<license>> <<package POLUTIL RealPolynomialUtilitiesPackage>> <<category RRCC RealRootCharacterizationCategory>> <<category RCFIELD RealClosedField>> <<domain ROIRC RightOpenIntervalRootCharacterization>> <<domain RECLOS RealClosure>> @ \eject \begin{thebibliography}{99} \bibitem{1} R. Rioboo, {\sl Real Algebraic Closure of an ordered Field : Implementation in Axiom.}, In proceedings of the ISSAC'92 Conference, Berkeley 1992 pp. 206-215. \bibitem{2} Z. Ligatsikas, R. Rioboo, M. F. Roy {\sl Generic computation of the real closure of an ordered field.}, In Mathematics and Computers in Simulation Volume 42, Issue 4-6, November 1996. \end{thebibliography} \end{document}