\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra realzero.spad} \author{Andy Neff} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package REAL0 RealZeroPackage} <<package REAL0 RealZeroPackage>>= )abbrev package REAL0 RealZeroPackage ++ Author: Andy Neff ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: UnivariatePolynomial, RealZeroPackageQ ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package provides functions for finding the real zeros ++ of univariate polynomials over the integers to arbitrary user-specified ++ precision. The results are returned as a list of ++ isolating intervals which are expressed as records with "left" and "right" rational number ++ components. RealZeroPackage(Pol): T == C where Pol: UnivariatePolynomialCategory Integer RN ==> Fraction Integer Interval ==> Record(left : RN, right : RN) isoList ==> List(Interval) T == with -- next two functions find isolating intervals realZeros: (Pol) -> isoList ++ realZeros(pol) returns a list of isolating intervals for ++ all the real zeros of the univariate polynomial pol. realZeros: (Pol, Interval) -> isoList ++ realZeros(pol, range) returns a list of isolating intervals ++ for all the real zeros of the univariate polynomial pol which ++ lie in the interval expressed by the record range. -- next two functions return intervals smaller then tolerence realZeros: (Pol, RN) -> isoList ++ realZeros(pol, eps) returns a list of intervals of length less ++ than the rational number eps for all the real roots of the ++ polynomial pol. realZeros: (Pol, Interval, RN) -> isoList ++ realZeros(pol, int, eps) returns a list of intervals of length ++ less than the rational number eps for all the real roots of the ++ polynomial pol which lie in the interval expressed by the ++ record int. refine: (Pol, Interval, RN) -> Interval ++ refine(pol, int, eps) refines the interval int containing ++ exactly one root of the univariate polynomial pol to size less ++ than the rational number eps. refine: (Pol, Interval, Interval) -> Union(Interval,"failed") ++ refine(pol, int, range) takes a univariate polynomial pol and ++ and isolating interval int containing exactly one real ++ root of pol; the operation returns an isolating interval which ++ is contained within range, or "failed" if no such isolating interval exists. midpoint: Interval -> RN ++ midpoint(int) returns the midpoint of the interval int. midpoints: isoList -> List RN ++ midpoints(isolist) returns the list of midpoints for the list ++ of intervals isolist. C == add --Local Functions makeSqfr: Pol -> Pol ReZeroSqfr: (Pol) -> isoList PosZero: (Pol) -> isoList Zero1: (Pol) -> isoList transMult: (Integer, Pol) -> Pol transMultInv: (Integer, Pol) -> Pol transAdd1: (Pol) -> Pol invert: (Pol) -> Pol minus: (Pol) -> Pol negate: Interval -> Interval rootBound: (Pol) -> Integer var: (Pol) -> Integer negate(int : Interval):Interval == [-int.right,-int.left] midpoint(i : Interval):RN == (1/2)*(i.left + i.right) midpoints(li : isoList) : List RN == [midpoint x for x in li] makeSqfr(F : Pol):Pol == sqfr := squareFree F F := */[s.factor for s in factors(sqfr)] realZeros(F : Pol) == ReZeroSqfr makeSqfr F realZeros(F : Pol, rn : RN) == F := makeSqfr F [refine(F,int,rn) for int in ReZeroSqfr(F)] realZeros(F : Pol, bounds : Interval) == F := makeSqfr F [rint::Interval for int in ReZeroSqfr(F) | (rint:=refine(F,int,bounds)) case Interval] realZeros(F : Pol, bounds : Interval, rn : RN) == F := makeSqfr F [refine(F,int,rn) for int in realZeros(F,bounds)] ReZeroSqfr(F : Pol) == F = 0 => error "ReZeroSqfr: zero polynomial" L : isoList := [] degree(F) = 0 => L if (r := minimumDegree(F)) > 0 then L := [[0,0]$Interval] tempF := F exquo monomial(1, r) if not (tempF case "failed") then F := tempF J:isoList := [negate int for int in reverse(PosZero(minus(F)))] K : isoList := PosZero(F) append(append(J, L), K) PosZero(F : Pol) == --F is square free, primitive --and F(0) ~= 0; returns isoList for positive --roots of F b : Integer := rootBound(F) F := transMult(b,F) L : isoList := Zero1(F) int : Interval L := [[b*int.left, b*int.right]$Interval for int in L] Zero1(F : Pol) == --returns isoList for roots of F in (0,1) J : isoList K : isoList L : isoList L := [] (v := var(transAdd1(invert(F)))) = 0 => [] v = 1 => L := [[0,1]$Interval] G : Pol := transMultInv(2, F) H : Pol := transAdd1(G) if minimumDegree H > 0 then -- H has a root at 0 => F has one at 1/2, and G at 1 L := [[1/2,1/2]$Interval] Q : Pol := monomial(1, 1) tempH : Union(Pol, "failed") := H exquo Q if not (tempH case "failed") then H := tempH Q := Q + monomial(-1, 0) tempG : Union(Pol, "failed") := G exquo Q if not (tempG case "failed") then G := tempG int : Interval J := [[(int.left+1)* (1/2),(int.right+1) * (1/2)]$Interval for int in Zero1(H)] K := [[int.left * (1/2), int.right * (1/2)]$Interval for int in Zero1(G)] append(append(J, L), K) rootBound(F : Pol) == --returns power of 2 that is a bound --for the positive roots of F if leadingCoefficient(F) < 0 then F := -F lcoef := leadingCoefficient(F) F := reductum(F) i : Integer := 0 while not (F = 0) repeat if (an := leadingCoefficient(F)) < 0 then i := i - an F := reductum(F) b : Integer := 1 while (b * lcoef) <= i repeat b := 2 * b b transMult(c : Integer, F : Pol) == --computes Pol G such that G(x) = F(c*x) G : Pol := 0 while not (F = 0) repeat n := degree(F) G := G + monomial((c**n) * leadingCoefficient(F), n) F := reductum(F) G transMultInv(c : Integer, F : Pol) == --computes Pol G such that G(x) = (c**n) * F(x/c) d := degree(F) cc : Integer := 1 G : Pol := monomial(leadingCoefficient F,d) while (F:=reductum(F)) ~= 0 repeat n := degree(F) cc := cc*(c**(d-n):NonNegativeInteger) G := G + monomial(cc * leadingCoefficient(F), n) d := n G -- otransAdd1(F : Pol) == -- --computes Pol G such that G(x) = F(x+1) -- G : Pol := F -- n : Integer := 1 -- while (F := differentiate(F)) ~= 0 repeat -- if not ((tempF := F exquo n) case "failed") then F := tempF -- G := G + F -- n := n + 1 -- G transAdd1(F : Pol) == --computes Pol G such that G(x) = F(x+1) n := degree F v := vectorise(F, n+1) for i in 0..(n-1) repeat for j in (n-i)..n repeat qsetelt_!(v,j, qelt(v,j) + qelt(v,(j+1))) ans : Pol := 0 for i in 0..n repeat ans := ans + monomial(qelt(v,(i+1)),i) ans minus(F : Pol) == --computes Pol G such that G(x) = F(-x) G : Pol := 0 while not (F = 0) repeat n := degree(F) coef := leadingCoefficient(F) odd? n => G := G + monomial(-coef, n) F := reductum(F) G := G + monomial(coef, n) F := reductum(F) G invert(F : Pol) == --computes Pol G such that G(x) = (x**n) * F(1/x) G : Pol := 0 n := degree(F) while not (F = 0) repeat G := G + monomial(leadingCoefficient(F), (n-degree(F))::NonNegativeInteger) F := reductum(F) G var(F : Pol) == --number of sign variations in coefs of F i : Integer := 0 LastCoef : Boolean next : Boolean LastCoef := leadingCoefficient(F) < 0 while not ((F := reductum(F)) = 0) repeat next := leadingCoefficient(F) < 0 if ((not LastCoef) and next) or ((not next) and LastCoef) then i := i+1 LastCoef := next i refine(F : Pol, int : Interval, bounds : Interval) == lseg := min(int.right,bounds.right) - max(int.left,bounds.left) lseg < 0 => "failed" lseg = 0 => pt := int.left = bounds.right => int.left int.right elt(transMultInv(denom(pt),F),numer pt) = 0 => [pt,pt] "failed" lseg = int.right - int.left => int refine(F, refine(F, int, lseg), bounds) refine(F : Pol, int : Interval, eps : RN) == a := int.left b := int.right a=b => [a,b]$Interval an : Integer := numer(a) ad : Integer := denom(a) bn : Integer := numer(b) bd : Integer := denom(b) xfl : Boolean := false if (u:=elt(transMultInv(ad, F), an)) = 0 then F := (F exquo (monomial(ad,1)-monomial(an,0)))::Pol u:=elt(transMultInv(ad, F), an) if (v:=elt(transMultInv(bd, F), bn)) = 0 then F := (F exquo (monomial(bd,1)-monomial(bn,0)))::Pol v:=elt(transMultInv(bd, F), bn) u:=elt(transMultInv(ad, F), an) if u > 0 then (F:=-F;v:=-v) if v < 0 then error [int, "is not a valid isolation interval for", F] if eps <= 0 then error "precision must be positive" while (b - a) >= eps repeat mid : RN := (b + a) * (1/2) midn : Integer := numer(mid) midd : Integer := denom(mid) (v := elt(transMultInv(midd, F), midn)) < 0 => a := mid an := midn ad := midd v > 0 => b := mid bn := midn bd := midd v = 0 => a := mid b := mid an := midn ad := midd xfl := true [a, b]$Interval @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package REAL0 RealZeroPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}