\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra rdesys.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package RDETRS TranscendentalRischDESystem}
<<package RDETRS TranscendentalRischDESystem>>=
)abbrev package RDETRS TranscendentalRischDESystem
++ Risch differential equation system, transcendental case.
++ Author: Manuel Bronstein
++ Date Created: 17 August 1992
++ Date Last Updated: 3 February 1994
TranscendentalRischDESystem(F, UP): Exports == Implementation where
  F  : Join(Field, CharacteristicZero, RetractableTo Integer)
  UP : UnivariatePolynomialCategory F
 
  N   ==> NonNegativeInteger
  Z   ==> Integer
  RF  ==> Fraction UP
  V   ==> Vector UP
  U   ==> Union(List UP, "failed")
  REC ==> Record(z1:UP, z2:UP, r1:UP, r2:UP)
 
  Exports ==> with
    monomRDEsys: (RF, RF, RF, UP -> UP) -> _
                    Union(Record(a:UP, b:RF, h:UP, c1:RF, c2:RF, t:UP),"failed")
      ++ monomRDEsys(f,g1,g2,D) returns \spad{[A, B, H, C1, C2, T]} such that
      ++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution
      ++ if and only if \spad{y1 = Q1 / T, y2 = Q2 / T},
      ++ where \spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy
      ++ A \spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)}
      ++ D is the derivation to use.
    baseRDEsys: (RF, RF, RF)   -> Union(List RF, "failed")
      ++ baseRDEsys(f, g1, g2) returns fractions \spad{y_1.y_2} such that
      ++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)}
      ++ if \spad{y_1,y_2} exist, "failed" otherwise.
 
  Implementation ==> add
    import MonomialExtensionTools(F, UP)
    import SmithNormalForm(UP, V, V, Matrix UP)
 
    diophant: (UP, UP, UP, UP, UP) -> Union(REC, "failed")
    getBound: (UP, UP, UP, UP, UP) -> Z
    SPDEsys : (UP, UP, UP, UP, UP, Z, UP -> UP, (F, F, F, UP, UP, Z) -> U) -> U
    DSPDEsys: (F, UP, UP, UP, UP, Z, UP -> UP) -> U
    DSPDEmix: (UP, UP, F, F, N, Z, F) -> U
    DSPDEhdom: (UP, UP, F, F, N, Z) -> U
    DSPDEbdom: (UP, UP, F, F, N, Z) -> U
    DSPDEsys0: (F, UP, UP, UP, UP, F, F, Z, UP -> UP, (UP,UP,F,F,N) -> U) -> U
 
-- reduces (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) to
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T
-- where A and H are polynomials, and B,C1,C2,Q1 and Q2 have no normal poles.
-- assumes that f is weakly normalized (no finite cancellation)
    monomRDEsys(f, g1, g2, derivation) ==
      gg := gcd(d := normalDenom(f, derivation),
                e := lcm(normalDenom(g1,derivation),normalDenom(g2,derivation)))
      tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP
      (u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed"
      [aa, tt * d * f, - d * derivation tt, u::UP * e * g1, u::UP * e * g2, tt]
 
-- solve (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) for y1,y2 in RF
-- assumes that f is weakly normalized (no finite cancellation) and nonzero
-- base case: F' = 0
    baseRDEsys(f, g1, g2) ==
      zero? f => error "baseRDEsys: f must be nonzero"
      zero? g1 and zero? g2 => [0, 0]
      (u := monomRDEsys(f, g1, g2, differentiate)) case "failed" => "failed"
      n := getBound(u.a, bb := retract(u.b), u.h,
                    cc1 := retract(u.c1), cc2 := retract(u.c2))
      (v := SPDEsys(u.a, bb, u.h, cc1, cc2, n, differentiate,
                    DSPDEsys(#1, #2::UP, #3::UP, #4, #5, #6, differentiate)))
                          case "failed" => "failed"
      l := v::List(UP)
      [first(l) / u.t, second(l) / u.t]
 
-- solve
--   D1 = A Z1 + B R1 - C R2
--   D2 = A Z2 + C R1 + B R2
-- i.e. (D1,D2) = ((A, 0, B, -C), (0, A, C, B)) (Z1, Z2, R1, R2)
-- for R1, R2 with degree(Ri) < degree(A)
-- assumes (A,B,C) = (1) and A and C are nonzero
    diophant(a, b, c, d1, d2) ==
      (u := diophantineSystem(matrix [[a,0,b,-c], [0,a,c,b]],
                          vector [d1,d2]).particular) case "failed" => "failed"
      v := u::V
      qr1 := divide(v 3, a)
      qr2 := divide(v 4, a)
      [v.1 + b * qr1.quotient - c * qr2.quotient,
       v.2 + c * qr1.quotient + b * qr2.quotient, qr1.remainder, qr2.remainder]
 
-- solve
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)
-- for polynomials Q1 and Q2 with degree <= n
-- A and B are nonzero
-- cancellation at infinity is possible
    SPDEsys(a, b, h, c1, c2, n, derivation, degradation) ==
      zero? c1 and zero? c2 => [0, 0]
      n < 0 => "failed"
      g := gcd(a, gcd(b, h))
      ((u1 := c1 exquo g) case "failed") or
        ((u2 := c2 exquo g) case "failed") => "failed"
      a := (a exquo g)::UP
      b := (b exquo g)::UP
      h := (h exquo g)::UP
      c1 := u1::UP
      c2 := u2::UP
      (da := degree a) > 0 =>
        (u := diophant(a, h, b, c1, c2)) case "failed" => "failed"
        rec := u::REC
        v := SPDEsys(a, b, h + derivation a, rec.z1 - derivation(rec.r1),
                     rec.z2 - derivation(rec.r2),n-da::Z,derivation,degradation)
        v case "failed" => "failed"
        l := v::List(UP)
        [a * first(l) + rec.r1, a * second(l) + rec.r2]
      ra := retract(a)@F
      ((rb := retractIfCan(b)@Union(F, "failed")) case "failed") or
        ((rh := retractIfCan(h)@Union(F, "failed")) case "failed") =>
                                DSPDEsys(ra, b, h, c1, c2, n, derivation)
      degradation(ra, rb::F, rh::F, c1, c2, n)
 
-- solve
-- a (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)
-- for polynomials Q1 and Q2 with degree <= n
-- a and B are nonzero, either B or H has positive degree
-- cancellation at infinity is not possible
    DSPDEsys(a, b, h, c1, c2, n, derivation) ==
      bb := degree(b)::Z
      hh:Z :=
        zero? h => 0
        degree(h)::Z
      lb := leadingCoefficient b
      lh := leadingCoefficient h
      bb < hh =>
        DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEhdom(#1,#2,#3,#4,#5,hh))
      bb > hh =>
        DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEbdom(#1,#2,#3,#4,#5,bb))
      det := lb * lb + lh * lh
      DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEmix(#1,#2,#3,#4,#5,bb,det))
 
    DSPDEsys0(a, b, h, c1, c2, lb, lh, n, derivation, getlc) ==
      ans1 := ans2 := 0::UP
      repeat
        zero? c1 and zero? c2 => return [ans1, ans2]
        n < 0 or (u := getlc(c1,c2,lb,lh,n::N)) case "failed" => return "failed"
        lq := u::List(UP)
        q1 := first lq
        q2 := second lq
        c1 := c1 - a * derivation(q1) - h * q1 + b * q2
        c2 := c2 - a * derivation(q2) - b * q1 - h * q2
        n := n - 1
        ans1 := ans1 + q1
        ans2 := ans2 + q2
 
    DSPDEmix(c1, c2, lb, lh, n, d, det) ==
      rh1:F :=
        zero? c1 => 0
        (d1 := degree(c1)::Z - d) < n => 0
        d1 > n => return "failed"
        leadingCoefficient c1
      rh2:F :=
        zero? c2 => 0
        (d2 := degree(c2)::Z - d) < n => 0
        d2 > n => return "failed"
        leadingCoefficient c2
      q1 := (rh1 * lh + rh2 * lb) / det
      q2 := (rh2 * lh - rh1 * lb) / det
      [monomial(q1, n), monomial(q2, n)]
 
 
    DSPDEhdom(c1, c2, lb, lh, n, d) ==
      q1:UP :=
        zero? c1 => 0
        (d1 := degree(c1)::Z - d) < n => 0
        d1 > n => return "failed"
        monomial(leadingCoefficient(c1) / lh, n)
      q2:UP :=
        zero? c2 => 0
        (d2 := degree(c2)::Z - d) < n => 0
        d2 > n => return "failed"
        monomial(leadingCoefficient(c2) / lh, n)
      [q1, q2]
 
    DSPDEbdom(c1, c2, lb, lh, n, d) ==
      q1:UP :=
        zero? c2 => 0
        (d2 := degree(c2)::Z - d) < n => 0
        d2 > n => return "failed"
        monomial(leadingCoefficient(c2) / lb, n)
      q2:UP :=
        zero? c1 => 0
        (d1 := degree(c1)::Z - d) < n => 0
        d1 > n => return "failed"
        monomial(- leadingCoefficient(c1) / lb, n)
      [q1, q2]
 
-- return a common bound on the degrees of a solution of
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T
-- cancellation at infinity is possible
-- a and b are nonzero
-- base case: F' = 0
    getBound(a, b, h, c1, c2) ==
      da := (degree a)::Z
      dc :=
        zero? c1 => degree(c2)::Z
        zero? c2 => degree(c1)::Z
        max(degree c1, degree c2)::Z
      hh:Z :=
        zero? h => 0
        degree(h)::Z
      db := max(hh, bb := degree(b)::Z)
      da < db + 1 => dc - db
      da > db + 1 => max(0, dc - da + 1)
      bb >= hh => dc - db
      (n := retractIfCan(leadingCoefficient(h) / leadingCoefficient(a)
                      )@Union(Z, "failed")) case Z => max(n::Z, dc - db)
      dc - db

@
\section{package RDEEFS ElementaryRischDESystem}
<<package RDEEFS ElementaryRischDESystem>>=
)abbrev package RDEEFS ElementaryRischDESystem
++ Risch differential equation, elementary case.
++ Author: Manuel Bronstein
++ Date Created: 12 August 1992
++ Date Last Updated: 17 August 1992
++ Keywords: elementary, function, integration.
ElementaryRischDESystem(R, F): Exports == Implementation where
  R : Join(GcdDomain, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField,
           FunctionSpace R)
 
  Z   ==> Integer
  SE  ==> Symbol
  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  NL  ==> Record(coeff:F,logand:F)
  RRF ==> Record(mainpart:F,limitedlogs:List NL)
  U   ==> Union(RRF, "failed")
  ULF ==> Union(List F, "failed")
  UEX ==> Union(Record(ratpart:F, coeff:F), "failed")
 
  Exports ==> with
    rischDEsys: (Z, F, F, F, SE, (F, List F) -> U, (F, F) -> UEX) -> ULF
      ++ rischDEsys(n, f, g_1, g_2, x,lim,ext) returns \spad{y_1.y_2} such that
      ++ \spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)}
      ++ if \spad{y_1,y_2} exist, "failed" otherwise.
      ++ lim is a limited integration function,
      ++ ext is an extended integration function.
 
  Implementation ==> add
    import IntegrationTools(R, F)
    import ElementaryRischDE(R, F)
    import TranscendentalRischDESystem(F, UP)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                             K, R, P, F)
 
--  sm1 := sqrt(-1::F)
--  ks1 := retract(sm1)@K
 
--  gcoeffs    : P -> ULF
--  gets1coeffs: F -> ULF
--  cheat      : (Z, F, F, F, SE, (F, List F) -> U, (F, F) -> UEX) -> ULF
    basecase   : (F, F, F, K) -> ULF
 
-- solve (y1',y2') + ((0, -nfp), (nfp, 0)) (y1,y2) = (g1, g2), base case
    basecase(nfp, g1, g2, k) ==
      (ans := baseRDEsys(univariate(nfp, k), univariate(g1, k),
                         univariate(g2, k))) case "failed" => "failed"
      l := ans::List(RF)
      [multivariate(first l, k), multivariate(second l, k)]
 
-- returns [x,y] s.t. f = x + y %i
-- f can be of the form (a + b %i) / (c + d %i)
--  gets1coeffs f ==
--    (lnum := gcoeffs(numer f)) case "failed" => "failed"
--    (lden := gcoeffs(denom f)) case "failed" => "failed"
--    a := first(lnum::List F)
--    b := second(lnum::List F)
--    c := first(lden::List F)
--    zero?(d := second(lden::List F)) => [a/c, b/c]
--    cd := c * c + d * d
--    [(a * c + b * d) / cd, (b * c - a * d) / cd]
 
--  gcoeffs p ==
--    degree(q := univariate(p, ks1)) > 1 => "failed"
--    [coefficient(q, 0)::F, coefficient(q, 1)::F]
 
--  cheat(n, f, g1, g2, x, limint, extint) ==
--    (u := rischDE(n, sm1 * f, g1 + sm1 * g2, x, limint, extint))
--      case "failed" => "failed"
--    (l := gets1coeffs(u::F)) case "failed" =>
--      error "rischDEsys: expect linear result in sqrt(-1)"
--    l::List F
 
-- solve (y1',y2') + ((0, -n f'), (n f', 0)) (y1,y2) = (g1, g2)
    rischDEsys(n, f, g1, g2, x, limint, extint) ==
      zero? g1 and zero? g2 => [0, 0]
      zero?(nfp := n * differentiate(f, x)) =>
        ((u1 := limint(g1, empty())) case "failed") or
          ((u2 := limint(g1, empty())) case "failed") => "failed"
        [u1.mainpart, u2.mainpart]
      freeOf?(y1 := g2 / nfp, x) and freeOf?(y2 := - g1 / nfp, x) => [y1, y2]
      vl := varselect(union(kernels nfp, union(kernels g1, kernels g2)), x)
      symbolIfCan(k := kmax vl) case SE => basecase(nfp, g1, g2, k)
--    cheat(n, f, g1, g2, x, limint, extint)
      error "rischDEsys: can only handle rational functions for now"

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<package RDETRS TranscendentalRischDESystem>>
<<package RDEEFS ElementaryRischDESystem>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}