\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra rdesys.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package RDETRS TranscendentalRischDESystem} <<package RDETRS TranscendentalRischDESystem>>= )abbrev package RDETRS TranscendentalRischDESystem ++ Risch differential equation system, transcendental case. ++ Author: Manuel Bronstein ++ Date Created: 17 August 1992 ++ Date Last Updated: 3 February 1994 TranscendentalRischDESystem(F, UP): Exports == Implementation where F : Join(Field, CharacteristicZero, RetractableTo Integer) UP : UnivariatePolynomialCategory F N ==> NonNegativeInteger Z ==> Integer RF ==> Fraction UP V ==> Vector UP U ==> Union(List UP, "failed") REC ==> Record(z1:UP, z2:UP, r1:UP, r2:UP) Exports ==> with monomRDEsys: (RF, RF, RF, UP -> UP) -> _ Union(Record(a:UP, b:RF, h:UP, c1:RF, c2:RF, t:UP),"failed") ++ monomRDEsys(f,g1,g2,D) returns \spad{[A, B, H, C1, C2, T]} such that ++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution ++ if and only if \spad{y1 = Q1 / T, y2 = Q2 / T}, ++ where \spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy ++ A \spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} ++ D is the derivation to use. baseRDEsys: (RF, RF, RF) -> Union(List RF, "failed") ++ baseRDEsys(f, g1, g2) returns fractions \spad{y_1.y_2} such that ++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} ++ if \spad{y_1,y_2} exist, "failed" otherwise. Implementation ==> add import MonomialExtensionTools(F, UP) import SmithNormalForm(UP, V, V, Matrix UP) diophant: (UP, UP, UP, UP, UP) -> Union(REC, "failed") getBound: (UP, UP, UP, UP, UP) -> Z SPDEsys : (UP, UP, UP, UP, UP, Z, UP -> UP, (F, F, F, UP, UP, Z) -> U) -> U DSPDEsys: (F, UP, UP, UP, UP, Z, UP -> UP) -> U DSPDEmix: (UP, UP, F, F, N, Z, F) -> U DSPDEhdom: (UP, UP, F, F, N, Z) -> U DSPDEbdom: (UP, UP, F, F, N, Z) -> U DSPDEsys0: (F, UP, UP, UP, UP, F, F, Z, UP -> UP, (UP,UP,F,F,N) -> U) -> U -- reduces (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) to -- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T -- where A and H are polynomials, and B,C1,C2,Q1 and Q2 have no normal poles. -- assumes that f is weakly normalized (no finite cancellation) monomRDEsys(f, g1, g2, derivation) == gg := gcd(d := normalDenom(f, derivation), e := lcm(normalDenom(g1,derivation),normalDenom(g2,derivation))) tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP (u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed" [aa, tt * d * f, - d * derivation tt, u::UP * e * g1, u::UP * e * g2, tt] -- solve (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) for y1,y2 in RF -- assumes that f is weakly normalized (no finite cancellation) and nonzero -- base case: F' = 0 baseRDEsys(f, g1, g2) == zero? f => error "baseRDEsys: f must be nonzero" zero? g1 and zero? g2 => [0, 0] (u := monomRDEsys(f, g1, g2, differentiate)) case "failed" => "failed" n := getBound(u.a, bb := retract(u.b), u.h, cc1 := retract(u.c1), cc2 := retract(u.c2)) (v := SPDEsys(u.a, bb, u.h, cc1, cc2, n, differentiate, DSPDEsys(#1, #2::UP, #3::UP, #4, #5, #6, differentiate))) case "failed" => "failed" l := v::List(UP) [first(l) / u.t, second(l) / u.t] -- solve -- D1 = A Z1 + B R1 - C R2 -- D2 = A Z2 + C R1 + B R2 -- i.e. (D1,D2) = ((A, 0, B, -C), (0, A, C, B)) (Z1, Z2, R1, R2) -- for R1, R2 with degree(Ri) < degree(A) -- assumes (A,B,C) = (1) and A and C are nonzero diophant(a, b, c, d1, d2) == (u := diophantineSystem(matrix [[a,0,b,-c], [0,a,c,b]], vector [d1,d2]).particular) case "failed" => "failed" v := u::V qr1 := divide(v 3, a) qr2 := divide(v 4, a) [v.1 + b * qr1.quotient - c * qr2.quotient, v.2 + c * qr1.quotient + b * qr2.quotient, qr1.remainder, qr2.remainder] -- solve -- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2) -- for polynomials Q1 and Q2 with degree <= n -- A and B are nonzero -- cancellation at infinity is possible SPDEsys(a, b, h, c1, c2, n, derivation, degradation) == zero? c1 and zero? c2 => [0, 0] n < 0 => "failed" g := gcd(a, gcd(b, h)) ((u1 := c1 exquo g) case "failed") or ((u2 := c2 exquo g) case "failed") => "failed" a := (a exquo g)::UP b := (b exquo g)::UP h := (h exquo g)::UP c1 := u1::UP c2 := u2::UP (da := degree a) > 0 => (u := diophant(a, h, b, c1, c2)) case "failed" => "failed" rec := u::REC v := SPDEsys(a, b, h + derivation a, rec.z1 - derivation(rec.r1), rec.z2 - derivation(rec.r2),n-da::Z,derivation,degradation) v case "failed" => "failed" l := v::List(UP) [a * first(l) + rec.r1, a * second(l) + rec.r2] ra := retract(a)@F ((rb := retractIfCan(b)@Union(F, "failed")) case "failed") or ((rh := retractIfCan(h)@Union(F, "failed")) case "failed") => DSPDEsys(ra, b, h, c1, c2, n, derivation) degradation(ra, rb::F, rh::F, c1, c2, n) -- solve -- a (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2) -- for polynomials Q1 and Q2 with degree <= n -- a and B are nonzero, either B or H has positive degree -- cancellation at infinity is not possible DSPDEsys(a, b, h, c1, c2, n, derivation) == bb := degree(b)::Z hh:Z := zero? h => 0 degree(h)::Z lb := leadingCoefficient b lh := leadingCoefficient h bb < hh => DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEhdom(#1,#2,#3,#4,#5,hh)) bb > hh => DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEbdom(#1,#2,#3,#4,#5,bb)) det := lb * lb + lh * lh DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,DSPDEmix(#1,#2,#3,#4,#5,bb,det)) DSPDEsys0(a, b, h, c1, c2, lb, lh, n, derivation, getlc) == ans1 := ans2 := 0::UP repeat zero? c1 and zero? c2 => return [ans1, ans2] n < 0 or (u := getlc(c1,c2,lb,lh,n::N)) case "failed" => return "failed" lq := u::List(UP) q1 := first lq q2 := second lq c1 := c1 - a * derivation(q1) - h * q1 + b * q2 c2 := c2 - a * derivation(q2) - b * q1 - h * q2 n := n - 1 ans1 := ans1 + q1 ans2 := ans2 + q2 DSPDEmix(c1, c2, lb, lh, n, d, det) == rh1:F := zero? c1 => 0 (d1 := degree(c1)::Z - d) < n => 0 d1 > n => return "failed" leadingCoefficient c1 rh2:F := zero? c2 => 0 (d2 := degree(c2)::Z - d) < n => 0 d2 > n => return "failed" leadingCoefficient c2 q1 := (rh1 * lh + rh2 * lb) / det q2 := (rh2 * lh - rh1 * lb) / det [monomial(q1, n), monomial(q2, n)] DSPDEhdom(c1, c2, lb, lh, n, d) == q1:UP := zero? c1 => 0 (d1 := degree(c1)::Z - d) < n => 0 d1 > n => return "failed" monomial(leadingCoefficient(c1) / lh, n) q2:UP := zero? c2 => 0 (d2 := degree(c2)::Z - d) < n => 0 d2 > n => return "failed" monomial(leadingCoefficient(c2) / lh, n) [q1, q2] DSPDEbdom(c1, c2, lb, lh, n, d) == q1:UP := zero? c2 => 0 (d2 := degree(c2)::Z - d) < n => 0 d2 > n => return "failed" monomial(leadingCoefficient(c2) / lb, n) q2:UP := zero? c1 => 0 (d1 := degree(c1)::Z - d) < n => 0 d1 > n => return "failed" monomial(- leadingCoefficient(c1) / lb, n) [q1, q2] -- return a common bound on the degrees of a solution of -- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T -- cancellation at infinity is possible -- a and b are nonzero -- base case: F' = 0 getBound(a, b, h, c1, c2) == da := (degree a)::Z dc := zero? c1 => degree(c2)::Z zero? c2 => degree(c1)::Z max(degree c1, degree c2)::Z hh:Z := zero? h => 0 degree(h)::Z db := max(hh, bb := degree(b)::Z) da < db + 1 => dc - db da > db + 1 => max(0, dc - da + 1) bb >= hh => dc - db (n := retractIfCan(leadingCoefficient(h) / leadingCoefficient(a) )@Union(Z, "failed")) case Z => max(n::Z, dc - db) dc - db @ \section{package RDEEFS ElementaryRischDESystem} <<package RDEEFS ElementaryRischDESystem>>= )abbrev package RDEEFS ElementaryRischDESystem ++ Risch differential equation, elementary case. ++ Author: Manuel Bronstein ++ Date Created: 12 August 1992 ++ Date Last Updated: 17 August 1992 ++ Keywords: elementary, function, integration. ElementaryRischDESystem(R, F): Exports == Implementation where R : Join(GcdDomain, CharacteristicZero, RetractableTo Integer, LinearlyExplicitRingOver Integer) F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField, FunctionSpace R) Z ==> Integer SE ==> Symbol K ==> Kernel F P ==> SparseMultivariatePolynomial(R, K) UP ==> SparseUnivariatePolynomial F RF ==> Fraction UP NL ==> Record(coeff:F,logand:F) RRF ==> Record(mainpart:F,limitedlogs:List NL) U ==> Union(RRF, "failed") ULF ==> Union(List F, "failed") UEX ==> Union(Record(ratpart:F, coeff:F), "failed") Exports ==> with rischDEsys: (Z, F, F, F, SE, (F, List F) -> U, (F, F) -> UEX) -> ULF ++ rischDEsys(n, f, g_1, g_2, x,lim,ext) returns \spad{y_1.y_2} such that ++ \spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} ++ if \spad{y_1,y_2} exist, "failed" otherwise. ++ lim is a limited integration function, ++ ext is an extended integration function. Implementation ==> add import IntegrationTools(R, F) import ElementaryRischDE(R, F) import TranscendentalRischDESystem(F, UP) import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, P, F) -- sm1 := sqrt(-1::F) -- ks1 := retract(sm1)@K -- gcoeffs : P -> ULF -- gets1coeffs: F -> ULF -- cheat : (Z, F, F, F, SE, (F, List F) -> U, (F, F) -> UEX) -> ULF basecase : (F, F, F, K) -> ULF -- solve (y1',y2') + ((0, -nfp), (nfp, 0)) (y1,y2) = (g1, g2), base case basecase(nfp, g1, g2, k) == (ans := baseRDEsys(univariate(nfp, k), univariate(g1, k), univariate(g2, k))) case "failed" => "failed" l := ans::List(RF) [multivariate(first l, k), multivariate(second l, k)] -- returns [x,y] s.t. f = x + y %i -- f can be of the form (a + b %i) / (c + d %i) -- gets1coeffs f == -- (lnum := gcoeffs(numer f)) case "failed" => "failed" -- (lden := gcoeffs(denom f)) case "failed" => "failed" -- a := first(lnum::List F) -- b := second(lnum::List F) -- c := first(lden::List F) -- zero?(d := second(lden::List F)) => [a/c, b/c] -- cd := c * c + d * d -- [(a * c + b * d) / cd, (b * c - a * d) / cd] -- gcoeffs p == -- degree(q := univariate(p, ks1)) > 1 => "failed" -- [coefficient(q, 0)::F, coefficient(q, 1)::F] -- cheat(n, f, g1, g2, x, limint, extint) == -- (u := rischDE(n, sm1 * f, g1 + sm1 * g2, x, limint, extint)) -- case "failed" => "failed" -- (l := gets1coeffs(u::F)) case "failed" => -- error "rischDEsys: expect linear result in sqrt(-1)" -- l::List F -- solve (y1',y2') + ((0, -n f'), (n f', 0)) (y1,y2) = (g1, g2) rischDEsys(n, f, g1, g2, x, limint, extint) == zero? g1 and zero? g2 => [0, 0] zero?(nfp := n * differentiate(f, x)) => ((u1 := limint(g1, empty())) case "failed") or ((u2 := limint(g1, empty())) case "failed") => "failed" [u1.mainpart, u2.mainpart] freeOf?(y1 := g2 / nfp, x) and freeOf?(y2 := - g1 / nfp, x) => [y1, y2] vl := varselect(union(kernels nfp, union(kernels g1, kernels g2)), x) symbolIfCan(k := kmax vl) case SE => basecase(nfp, g1, g2, k) -- cheat(n, f, g1, g2, x, limint, extint) error "rischDEsys: can only handle rational functions for now" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package RDETRS TranscendentalRischDESystem>> <<package RDEEFS ElementaryRischDESystem>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}