\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra rderf.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package RDETR TranscendentalRischDE} <<package RDETR TranscendentalRischDE>>= )abbrev package RDETR TranscendentalRischDE ++ Risch differential equation, transcendental case. ++ Author: Manuel Bronstein ++ Date Created: Jan 1988 ++ Date Last Updated: 2 November 1995 TranscendentalRischDE(F, UP): Exports == Implementation where F : Join(Field, CharacteristicZero, RetractableTo Integer) UP : UnivariatePolynomialCategory F N ==> NonNegativeInteger Z ==> Integer RF ==> Fraction UP REC ==> Record(a:UP, b:UP, c:UP, t:UP) SPE ==> Record(b:UP, c:UP, m:Z, alpha:UP, beta:UP) PSOL==> Record(ans:UP, nosol:Boolean) ANS ==> Union(ans:PSOL, eq:SPE) PSQ ==> Record(ans:RF, nosol:Boolean) Exports ==> with monomRDE: (RF,RF,UP->UP) -> Union(Record(a:UP,b:RF,c:RF,t:UP), "failed") ++ monomRDE(f,g,D) returns \spad{[A, B, C, T]} such that ++ \spad{y' + f y = g} has a solution if and only if \spad{y = Q / T}, ++ where Q satisfies \spad{A Q' + B Q = C} and has no normal pole. ++ A and T are polynomials and B and C have no normal poles. ++ D is the derivation to use. baseRDE : (RF, RF) -> PSQ ++ baseRDE(f, g) returns a \spad{[y, b]} such that \spad{y' + fy = g} ++ if \spad{b = true}, y is a partial solution otherwise (no solution ++ in that case). ++ D is the derivation to use. polyRDE : (UP, UP, UP, Z, UP -> UP) -> ANS ++ polyRDE(a, B, C, n, D) returns either: ++ 1. \spad{[Q, b]} such that \spad{degree(Q) <= n} and ++ \spad{a Q'+ B Q = C} if \spad{b = true}, Q is a partial solution ++ otherwise. ++ 2. \spad{[B1, C1, m, \alpha, \beta]} such that any polynomial solution ++ of degree at most n of \spad{A Q' + BQ = C} must be of the form ++ \spad{Q = \alpha H + \beta} where \spad{degree(H) <= m} and ++ H satisfies \spad{H' + B1 H = C1}. ++ D is the derivation to use. Implementation ==> add import MonomialExtensionTools(F, UP) getBound : (UP, UP, Z) -> Z SPDEnocancel1: (UP, UP, Z, UP -> UP) -> PSOL SPDEnocancel2: (UP, UP, Z, Z, F, UP -> UP) -> ANS SPDE : (UP, UP, UP, Z, UP -> UP) -> Union(SPE, "failed") -- cancellation at infinity is possible, A is assumed nonzero -- needs tagged union because of branch choice problem -- always returns a PSOL in the base case (never a SPE) polyRDE(aa, bb, cc, d, derivation) == n:Z (u := SPDE(aa, bb, cc, d, derivation)) case "failed" => [[0, true]] zero?(u.c) => [[u.beta, false]] baseCase? := one?(dt := derivation monomial(1, 1)) n := degree(dt)::Z - 1 b0? := zero?(u.b) (~b0?) and (baseCase? or degree(u.b) > max(0, n)) => answ := SPDEnocancel1(u.b, u.c, u.m, derivation) [[u.alpha * answ.ans + u.beta, answ.nosol]] (n > 0) and (b0? or degree(u.b) < n) => uansw := SPDEnocancel2(u.b,u.c,u.m,n,leadingCoefficient dt,derivation) uansw case ans=> [[u.alpha * uansw.ans.ans + u.beta, uansw.ans.nosol]] [[uansw.eq.b, uansw.eq.c, uansw.eq.m, u.alpha * uansw.eq.alpha, u.alpha * uansw.eq.beta + u.beta]] b0? and baseCase? => degree(u.c) >= u.m => [[0, true]] [[u.alpha * integrate(u.c) + u.beta, false]] [u::SPE] -- cancellation at infinity is possible, A is assumed nonzero -- if u.b = 0 then u.a = 1 already, but no degree check is done -- returns "failed" if a p' + b p = c has no soln of degree at most d, -- otherwise [B, C, m, \alpha, \beta] such that any soln p of degree at -- most d of a p' + b p = c must be of the form p = \alpha h + \beta, -- where h' + B h = C and h has degree at most m SPDE(aa, bb, cc, d, derivation) == zero? cc => [0, 0, 0, 0, 0] d < 0 => "failed" (u := cc exquo (g := gcd(aa, bb))) case "failed" => "failed" aa := (aa exquo g)::UP bb := (bb exquo g)::UP cc := u::UP (ra := retractIfCan(aa)@Union(F, "failed")) case F => a1 := inv(ra::F) [a1 * bb, a1 * cc, d, 1, 0] bc := extendedEuclidean(bb, aa, cc)::Record(coef1:UP, coef2:UP) qr := divide(bc.coef1, aa) r := qr.remainder -- z = bc.coef2 + b * qr.quotient (v := SPDE(aa, bb + derivation aa, bc.coef2 + bb * qr.quotient - derivation r, d - degree(aa)::Z, derivation)) case "failed" => "failed" [v.b, v.c, v.m, aa * v.alpha, aa * v.beta + r] -- solves q' + b q = c with deg(q) <= d -- case (B <> 0) and (D = d/dt or degree(B) > max(0, degree(Dt) - 1)) -- this implies no cancellation at infinity, BQ term dominates -- returns [Q, flag] such that Q is a solution if flag is false, -- a partial solution otherwise. SPDEnocancel1(bb, cc, d, derivation) == q:UP := 0 db := (degree bb)::Z lb := leadingCoefficient bb while cc ~= 0 repeat d < 0 or (n := (degree cc)::Z - db) < 0 or n > d => return [q, true] r := monomial((leadingCoefficient cc) / lb, n::N) cc := cc - bb * r - derivation r d := n - 1 q := q + r [q, false] -- case (t is a nonlinear monomial) and (B = 0 or degree(B) < degree(Dt) - 1) -- this implies no cancellation at infinity, DQ term dominates or degree(Q) = 0 -- dtm1 = degree(Dt) - 1 SPDEnocancel2(bb, cc, d, dtm1, lt, derivation) == q:UP := 0 while cc ~= 0 repeat d < 0 or (n := (degree cc)::Z - dtm1) < 0 or n > d => return [[q, true]] if n > 0 then r := monomial((leadingCoefficient cc) / (n * lt), n::N) cc := cc - bb * r - derivation r d := n - 1 q := q + r else -- n = 0 so solution must have degree 0 db:N := (zero? bb => 0; degree bb); db ~= degree(cc) => return [[q, true]] zero? db => return [[bb, cc, 0, 1, q]] r := leadingCoefficient(cc) / leadingCoefficient(bb) cc := cc - r * bb - derivation(r::UP) d := - 1 q := q + r::UP [[q, false]] monomRDE(f, g, derivation) == gg := gcd(d := normalDenom(f,derivation), e := normalDenom(g,derivation)) tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP (u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed" [aa, aa * f - (d * derivation tt)::RF, u::UP * e * g, tt] -- solve y' + f y = g for y in RF -- assumes that f is weakly normalized (no finite cancellation) -- base case: F' = 0 baseRDE(f, g) == (u := monomRDE(f, g, differentiate)) case "failed" => [0, true] n := getBound(u.a,bb := retract(u.b)@UP,degree(cc := retract(u.c)@UP)::Z) v := polyRDE(u.a, bb, cc, n, differentiate).ans [v.ans / u.t, v.nosol] -- return an a bound on the degree of a solution of A P'+ B P = C,A ~= 0 -- cancellation at infinity is possible -- base case: F' = 0 getBound(a, b, dc) == da := (degree a)::Z zero? b => max(0, dc - da + 1) db := (degree b)::Z da > (db + 1) => max(0, dc - da + 1) da < (db + 1) => dc - db (n := retractIfCan(- leadingCoefficient(b) / leadingCoefficient(a) )@Union(Z, "failed")) case Z => max(n::Z, dc - db) dc - db @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- SPAD files for the integration world should be compiled in the -- following order: -- -- intaux RDERF intrf rdeef intef irexpand integrat <<package RDETR TranscendentalRischDE>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}