\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra rdeef.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTTOOLS IntegrationTools}
<<package INTTOOLS IntegrationTools>>=
)abbrev package INTTOOLS IntegrationTools
++ Tools for the integrator
++ Author: Manuel Bronstein
++ Date Created: 25 April 1990
++ Date Last Updated: 9 June 1993
++ Keywords: elementary, function, integration.
IntegrationTools(R: SetCategory, F:FunctionSpace R): Exp == Impl where
  K   ==> Kernel F
  SE  ==> Symbol
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  IR  ==> IntegrationResult F
  ANS ==> Record(special:F, integrand:F)
  U   ==> Union(ANS, "failed")

  Exp ==> with
    varselect: (List K, SE) -> List K
      ++ varselect([k1,...,kn], x) returns the ki which involve x.
    kmax     : List K -> K
      ++ kmax([k1,...,kn]) returns the top-level ki for integration.
    ksec     : (K, List K, SE) -> K
      ++ ksec(k, [k1,...,kn], x) returns the second top-level ki
      ++ after k involving x.
    union    : (List K, List K) -> List K
      ++ union(l1, l2) returns set-theoretic union of l1 and l2.
    vark     : (List F, SE) -> List K
      ++ vark([f1,...,fn],x) returns the set-theoretic union of
      ++ \spad{(varselect(f1,x),...,varselect(fn,x))}.
    if R has IntegralDomain then
      removeConstantTerm: (F, SE) -> F
        ++ removeConstantTerm(f, x) returns f minus any additive constant
        ++ with respect to x.
    if R has GcdDomain and F has ElementaryFunctionCategory then
      mkPrim: (F, SE) -> F
        ++ mkPrim(f, x) makes the logs in f which are linear in x
        ++ primitive with respect to x.
      if R has ConvertibleTo Pattern Integer and R has PatternMatchable Integer
        and F has LiouvillianFunctionCategory and F has RetractableTo SE then
          intPatternMatch: (F, SE, (F, SE) -> IR, (F, SE) -> U) -> IR
            ++ intPatternMatch(f, x, int, pmint) tries to integrate \spad{f}
            ++ first by using the integration function \spad{int}, and then
            ++ by using the pattern match intetgration function \spad{pmint}
            ++ on any remaining unintegrable part.

  Impl ==> add
    macro ALGOP == '%alg
    better?: (K, K) -> Boolean

    union(l1, l2)   == setUnion(l1, l2)
    varselect(l, x) == [k for k in l | member?(x, variables(k::F))]
    ksec(k, l, x)   == kmax setUnion(remove(k, l), vark(argument k, x))

    vark(l, x) ==
      varselect(reduce("setUnion",[kernels f for f in l],empty()$List(K)), x)

    kmax l ==
      ans := first l
      for k in rest l repeat
        if better?(k, ans) then ans := k
      ans

-- true if x should be considered before y in the tower
    better?(x, y) ==
      height(y) ~= height(x) => height(y) < height(x)
      has?(operator y, ALGOP) or
              (is?(y,'exp) and not is?(x, 'exp)
                                 and not has?(operator x, ALGOP))

    if R has IntegralDomain then
      removeConstantTerm(f, x) ==
        not freeOf?((den := denom f)::F, x) => f
        (u := isPlus(num := numer f)) case "failed" =>
          freeOf?(num::F, x) => 0
          f
        ans:P := 0
        for term in u::List(P) repeat
          if not freeOf?(term::F, x) then ans := ans + term
        ans / den

    if R has GcdDomain and F has ElementaryFunctionCategory then
      psimp     : (P, SE) -> Record(coef:Integer, logand:F)
      cont      : (P, List K) -> P
      logsimp   : (F, SE) -> F
      linearLog?: (K, F, SE)  -> Boolean

      logsimp(f, x) ==
        r1 := psimp(numer f, x)
        r2 := psimp(denom f, x)
        g := gcd(r1.coef, r2.coef)
        g * log(r1.logand ** (r1.coef quo g) / r2.logand ** (r2.coef quo g))

      cont(p, l) ==
        empty? l => p
        q := univariate(p, first l)
        cont(unitNormal(leadingCoefficient q).unit * content q, rest l)

      linearLog?(k, f, x) ==
        is?(k, 'log) and
         ((u := retractIfCan(univariate(f,k))@Union(UP,"failed")) case UP)
             and one?(degree(u::UP))
                and not member?(x, variables leadingCoefficient(u::UP))

      mkPrim(f, x) ==
        lg := [k for k in kernels f | linearLog?(k, f, x)]
        eval(f, lg, [logsimp(first argument k, x) for k in lg])

      psimp(p, x) ==
        (u := isExpt(p := ((p exquo cont(p, varselect(variables p, x)))::P)))
          case "failed" => [1, p::F]
        [u.exponent, u.var::F]

      if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
        and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then
          intPatternMatch(f, x, int, pmint) ==
            ir := int(f, x)
            empty?(l := notelem ir) => ir
            ans := ratpart ir
            nl:List(Record(integrand:F, intvar:F)) := empty()
            lg := logpart ir
            for rec in l repeat
              u := pmint(rec.integrand, retract(rec.intvar))
              if u case ANS then
                 rc := u::ANS
                 ans := ans + rc.special
                 if rc.integrand ~= 0 then
                   ir0 := intPatternMatch(rc.integrand, x, int, pmint)
                   ans := ans + ratpart ir0
                   lg  := concat(logpart ir0, lg)
                   nl  := concat(notelem ir0, nl)
              else nl := concat(rec, nl)
            mkAnswer(ans, lg, nl)

@
\section{package RDEEF ElementaryRischDE}
<<package RDEEF ElementaryRischDE>>=
)abbrev package RDEEF ElementaryRischDE
++ Risch differential equation, elementary case.
++ Author: Manuel Bronstein
++ Date Created: 1 February 1988
++ Date Last Updated: 2 November 1995
++ Keywords: elementary, function, integration.
ElementaryRischDE(R, F): Exports == Implementation where
  R : Join(GcdDomain, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField,
           FunctionSpace R)

  N   ==> NonNegativeInteger
  Z   ==> Integer
  SE  ==> Symbol
  LF  ==> List F
  K   ==> Kernel F
  LK  ==> List K
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  GP  ==> LaurentPolynomial(F, UP)
  Data ==> List Record(coeff:Z, argument:P)
  RRF ==> Record(mainpart:F,limitedlogs:List NL)
  NL  ==> Record(coeff:F,logand:F)
  U   ==> Union(RRF, "failed")
  UF  ==> Union(F, "failed")
  UUP ==> Union(UP, "failed")
  UGP ==> Union(GP, "failed")
  URF ==> Union(RF, "failed")
  UEX ==> Union(Record(ratpart:F,  coeff:F), "failed")
  PSOL==> Record(ans:F, right:F, sol?:Boolean)
  FAIL==> error("Function not supported by Risch d.e.")

  Exports ==> with
    rischDE: (Z, F, F, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL
         ++ rischDE(n, f, g, x, lim, ext) returns \spad{[y, h, b]} such that
         ++ \spad{dy/dx + n df/dx y = h} and \spad{b := h = g}.
         ++ The equation \spad{dy/dx + n df/dx y = g} has no solution
         ++ if \spad{h \~~= g} (y is a partial solution in that case).
         ++ Notes: lim is a limited integration function, and
         ++ ext is an extended integration function.

  Implementation ==> add
    macro ALGOP == '%alg
    import IntegrationTools(R, F)
    import TranscendentalRischDE(F, UP)
    import TranscendentalIntegration(F, UP)
    import PureAlgebraicIntegration(R, F, F)
    import FunctionSpacePrimitiveElement(R, F)
    import ElementaryFunctionStructurePackage(R, F)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                             K, R, P, F)

    RF2GP:     RF -> GP
    makeData  : (F, SE, K)    -> Data
    normal0   : (Z, F, F, SE) -> UF
    normalise0: (Z, F, F, SE) -> PSOL
    normalise : (Z, F, F, F, SE, K, (F, LF) -> U, (F, F) -> UEX) -> PSOL
    rischDEalg: (Z, F, F, F, K, LK, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL
    rischDElog: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF
    rischDEexp: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF
    polyDElog : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP
    polyDEexp : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP
    gpolDEexp : (LK, UP, GP,GP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UGP
    boundAt0  : (LK, F, Z,  Z,    SE, K, (F, LF) -> U) -> Z
    boundInf  : (LK, F, Z,  Z, Z, SE, K, (F, LF) -> U) -> Z
    logdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP
    expdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP
    logdeg    : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP
    expdeg    : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP
    exppolyint: (UP, (Z, F) -> PSOL) -> UUP
    RRF2F     : RRF -> F
    logdiff   : (List K, List K) -> List K

    tab:AssociationList(F, Data) := table()

    RF2GP f == (numer(f)::GP exquo denom(f)::GP)::GP

    logdiff(twr, bad) ==
      [u for u in twr | is?(u, 'log) and not member?(u, bad)]

    rischDEalg(n, nfp, f, g, k, l, x, limint, extint) ==
      symbolIfCan(kx := ksec(k, l, x)) case SE =>
        (u := palgRDE(nfp, f, g, kx, k, normal0(n, #1, #2, #3))) case "failed"
             => [0, 0, false]
        [u::F, g, true]
      has?(operator kx, ALGOP) =>
        rec := primitiveElement(kx::F, k::F)
        y   := rootOf(rec.prim)
        lk:LK := [kx, k]
        lv:LF := [(rec.pol1) y, (rec.pol2) y]
        rc := rischDE(n, eval(f, lk, lv), eval(g, lk, lv), x, limint, extint)
        rc.sol? => [eval(rc.ans, retract(y)@K, rec.primelt), rc.right, true]
        [0, 0, false]
      FAIL

-- solve y' + n f'y = g for a rational function y
    rischDE(n, f, g, x, limitedint, extendedint) ==
      zero? g => [0, g, true]
      zero?(nfp := n * differentiate(f, x)) =>
        (u := limitedint(g, empty())) case "failed" => [0, 0, false]
        [u.mainpart, g, true]
      freeOf?(y := g / nfp, x) => [y, g, true]
      vl := varselect(union(kernels nfp, kernels g), x)
      symbolIfCan(k := kmax vl) case SE => normalise0(n, f, g, x)
      is?(k, 'log) or is?(k, 'exp) =>
        normalise(n, nfp, f, g, x, k, limitedint, extendedint)
      has?(operator k, ALGOP) =>
        rischDEalg(n, nfp, f, g, k, vl, x, limitedint, extendedint)
      FAIL

    normal0(n, f, g, x) ==
      rec := normalise0(n, f, g, x)
      rec.sol? => rec.ans
      "failed"

-- solve y' + n f' y = g
-- when f' and g are rational functions over a constant field
    normalise0(n, f, g, x) ==
      k := kernel(x)@K
      if (data1 := search(f, tab)) case "failed" then
        tab.f := data := makeData(f, x, k)
      else data := data1::Data
      f'  := nfprime := n * differentiate(f, x)
      p:P := 1
      for v in data | (m := n * v.coeff) > 0 repeat
        p  := p * v.argument ** (m::N)
        f' := f' - m * differentiate(v.argument::F, x) / (v.argument::F)
      rec := baseRDE(univariate(f', k), univariate(p::F * g, k))
      y := multivariate(rec.ans, k) / p::F
      rec.nosol => [y, differentiate(y, x) + nfprime * y, false]
      [y, g, true]

-- make f weakly normalized, and solve y' + n f' y = g
    normalise(n, nfp, f, g, x, k, limitedint, extendedint) ==
      if (data1:= search(f, tab)) case "failed" then
        tab.f := data := makeData(f, x, k)
      else data := data1::Data
      p:P := 1
      for v in data | (m := n * v.coeff) > 0 repeat
        p  := p * v.argument ** (m::N)
        f  := f - v.coeff * log(v.argument::F)
        nfp := nfp - m * differentiate(v.argument::F, x) / (v.argument::F)
      newf := univariate(nfp, k)
      newg := univariate(p::F * g, k)
      twr := union(logdiff(tower f, empty()), logdiff(tower g, empty()))
      ans1 :=
        is?(k, 'log) =>
          rischDElog(twr, newf, newg, x, k,
                       differentiate(#1, differentiate(#1, x),
                             differentiate(k::F, x)::UP),
                                            limitedint, extendedint)
        is?(k, 'exp) =>
          rischDEexp(twr, newf, newg, x, k,
                     differentiate(#1, differentiate(#1, x),
                      monomial(differentiate(first argument k, x), 1)),
                                                limitedint, extendedint)
      ans1 case "failed" => [0, 0, false]
      [multivariate(ans1::RF, k) / p::F, g, true]

-- find the n * log(P) appearing in f, where P is in P, n in Z
    makeData(f, x, k) ==
      disasters := empty()$Data
      fnum := numer f
      fden := denom f
      for u in varselect(kernels f, x) | is?(u, 'log) repeat
        logand := first argument u
        if zero?(degree univariate(fden, u)) and
           one?(degree(num := univariate(fnum, u))) then
            cf := (leadingCoefficient num) / fden
            if (n := retractIfCan(cf)@Union(Z, "failed")) case Z then
              if degree(numer logand, k) > 0 then
                disasters := concat([n::Z, numer logand], disasters)
              if degree(denom logand, k) > 0 then
                disasters := concat([-(n::Z), denom logand], disasters)
      disasters

    rischDElog(twr, f, g, x, theta, driv, limint, extint) ==
      (u := monomRDE(f, g, driv)) case "failed" => "failed"
      (v := polyDElog(twr, u.a, retract(u.b), retract(u.c), x, theta, driv,
                      limint, extint)) case "failed" => "failed"
      v::UP / u.t

    rischDEexp(twr, f, g, x, theta, driv, limint, extint) ==
      (u := monomRDE(f, g, driv)) case "failed" => "failed"
      (v := gpolDEexp(twr, u.a, RF2GP(u.b), RF2GP(u.c), x, theta, driv,
                      limint, extint)) case "failed" => "failed"
      convert(v::GP)@RF / u.t::RF

    polyDElog(twr, aa, bb, cc, x, t, driv, limint, extint) ==
      zero? cc => 0
      t' := differentiate(t::F, x)
      zero? bb =>
        (u := cc exquo aa) case "failed" => "failed"
        primintfldpoly(u::UP, extint(#1, t'), t')
      n := degree(cc)::Z - (db := degree(bb)::Z)
      if ((da := degree(aa)::Z) = db) and (da > 0) then
        lk0 := tower(f0 :=
                      - (leadingCoefficient bb) / (leadingCoefficient aa))
        lk1 := logdiff(twr, lk0)
        (if0 := limint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
        (alph := validExponential(lk0, RRF2F(if0::RRF), x)) case F =>
          return
            (ans := polyDElog(twr, alph::F * aa,
              differentiate(alph::F, x) * aa + alph::F * bb,
               cc, x, t, driv, limint, extint)) case "failed" => "failed"
            alph::F * ans::UP
      if (da > db + 1) then n := max(0, degree(cc)::Z - da + 1)
      if (da = db + 1) then
        i := limint(- (leadingCoefficient bb) / (leadingCoefficient aa),
                    [first argument t])
        if not(i case "failed") then
          r :=
            null(i.limitedlogs) => 0$F
            i.limitedlogs.first.coeff
          if (nn := retractIfCan(r)@Union(Z, "failed")) case Z then
            n := max(nn::Z, n)
      (v := polyRDE(aa, bb, cc, n, driv)) case ans =>
           v.ans.nosol => "failed"
           v.ans.ans
      w := v.eq
      zero?(w.b) =>
        degree(w.c) > w.m => "failed"
        (u := primintfldpoly(w.c, extint(#1,t'), t')) case "failed" => "failed"
        degree(u::UP) > w.m => "failed"
        w.alpha * u::UP + w.beta
      (u := logdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint))
        case "failed" => "failed"
      w.alpha * u::UP + w.beta

    gpolDEexp(twr, a, b, c, x, t, driv, limint, extint) ==
      zero? c => 0
      zero? b =>
        (u := c exquo (a::GP)) case "failed" => "failed"
        expintfldpoly(u::GP,
                   rischDE(#1, first argument t, #2, x, limint, extint))
      lb := boundAt0(twr, - coefficient(b, 0) / coefficient(a, 0),
                     nb := order b, nc := order c, x, t, limint)
      tm := monomial(1, (m := max(0, max(-nb, lb - nc)))::N)$UP
      (v := polyDEexp(twr,a * tm,lb * differentiate(first argument t, x)
           * a * tm + retract(b * tm::GP)@UP,
               retract(c * monomial(1, m - lb))@UP,
                  x, t, driv, limint, extint)) case "failed" => "failed"
      v::UP::GP * monomial(1, lb)

    polyDEexp(twr, aa, bb, cc, x, t, driv, limint, extint) ==
      zero? cc => 0
      zero? bb =>
        (u := cc exquo aa) case "failed" => "failed"
        exppolyint(u::UP, rischDE(#1, first argument t, #2, x, limint, extint))
      n := boundInf(twr,-leadingCoefficient(bb) / (leadingCoefficient aa),
                 degree(aa)::Z, degree(bb)::Z, degree(cc)::Z, x, t, limint)
      (v := polyRDE(aa, bb, cc, n, driv)) case ans =>
           v.ans.nosol => "failed"
           v.ans.ans
      w := v.eq
      zero?(w.b) =>
        degree(w.c) > w.m => "failed"
        (u := exppolyint(w.c,
                  rischDE(#1, first argument t, #2, x, limint, extint)))
                         case "failed" => "failed"
        w.alpha * u::UP + w.beta
      (u := expdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint))
        case "failed" => "failed"
      w.alpha * u::UP + w.beta

    exppolyint(p, rischdiffeq) ==
      (u := expintfldpoly(p::GP, rischdiffeq)) case "failed" => "failed"
      retractIfCan(u::GP)@Union(UP, "failed")

    boundInf(twr, f0, da, db, dc, x, t, limitedint) ==
      da < db => dc - db
      da > db => max(0, dc - da)
      l1 := logdiff(twr, l0 := tower f0)
      (if0 := limitedint(f0, [first argument u for u in l1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) =>
                               max(0, max(degree(al.polyPart), dc - db))
        dc - db
      dc - db

    boundAt0(twr, f0, nb, nc, x, t, limitedint) ==
      nb ~= 0 => min(0, nc - min(0, nb))
      l1 := logdiff(twr, l0 := tower f0)
      (if0 := limitedint(f0, [first argument u for u in l1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) =>
                                    min(0, min(degree(al.polyPart), nc))
        min(0, nc)
      min(0, nc)

-- case a = 1, deg(B) = 0, B <> 0
-- cancellation at infinity is possible
    logdegrad(twr, b, c, n, x, t, limitedint, extint) ==
      t'  := differentiate(t::F, x)
      lk1 := logdiff(twr, lk0 := tower(f0 := - b))
      (if0 := limitedint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(lk0, RRF2F(if0::RRF), x)) case F =>
        (u1 := primintfldpoly(inv(alpha::F) * c, extint(#1, t'), t'))
                                               case "failed" => "failed"
        degree(u1::UP)::Z > n => "failed"
        alpha::F * u1::UP
      logdeg(c, - if0.mainpart -
               +/[v.coeff * log(v.logand) for v in if0.limitedlogs],
                                           n, x, t', limitedint, extint)

-- case a = 1, degree(b) = 0, and (exp integrate b) is not in F
-- this implies no cancellation at infinity
    logdeg(c, f, n, x, t', limitedint, extint) ==
      answr:UP := 0
      repeat
        zero? c => return answr
        (n < 0) or ((m := degree c)::Z > n) => return "failed"
        u := rischDE(1, f, leadingCoefficient c, x, limitedint, extint)
        ~u.sol? => return "failed"
        zero? m => return(answr + u.ans::UP)
        n   := m::Z - 1
        c   := (reductum c) - monomial(m::Z * t' * u.ans, (m - 1)::N)
        answr := answr + monomial(u.ans, m)

-- case a = 1, deg(B) = 0, B <> 0
-- cancellation at infinity is possible
    expdegrad(twr, b, c, n, x, t, limint, extint) ==
      lk1 := logdiff(twr, lk0 := tower(f0 := - b))
      (if0 := limint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
      intf0 := - if0.mainpart -
                    +/[v.coeff * log(v.logand) for v in if0.limitedlogs]
      (alpha := validExponential(concat(t, lk0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) and
         (degree(al.polyPart) >= 0) =>
          (u1 := expintfldpoly(c::GP * recip(al.polyPart)::GP,
                  rischDE(#1, first argument t, #2, x, limint, extint)))
                                               case "failed" => "failed"
          degree(u1::GP) > n => "failed"
          retractIfCan(al.polyPart * u1::GP)@Union(UP, "failed")
        expdeg(c, intf0, n, x, first argument t, limint,extint)
      expdeg(c, intf0, n, x, first argument t, limint, extint)

-- case a = 1, degree(b) = 0, and (exp integrate b) is not a monomial
-- this implies no cancellation at infinity
    expdeg(c, f, n, x, eta, limitedint, extint) ==
      answr:UP := 0
      repeat
        zero? c => return answr
        (n < 0) or ((m := degree c)::Z > n) => return "failed"
        u := rischDE(1, f + m * eta, leadingCoefficient c, x,limitedint,extint)
        ~u.sol? => return "failed"
        zero? m => return(answr + u.ans::UP)
        n   := m::Z - 1
        c   := reductum c
        answr := answr + monomial(u.ans, m)

    RRF2F rrf ==
      rrf.mainpart + +/[v.coeff*log(v.logand) for v in rrf.limitedlogs]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  rderf  intrf  curve  curvepkg  divisor  pfo
--   intalg  intaf  efstruc  RDEEF  intef  irexpand  integrat

<<package INTTOOLS IntegrationTools>>
<<package RDEEF ElementaryRischDE>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}