\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra rdeef.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package INTTOOLS IntegrationTools} <<package INTTOOLS IntegrationTools>>= )abbrev package INTTOOLS IntegrationTools ++ Tools for the integrator ++ Author: Manuel Bronstein ++ Date Created: 25 April 1990 ++ Date Last Updated: 9 June 1993 ++ Keywords: elementary, function, integration. IntegrationTools(R: SetCategory, F:FunctionSpace R): Exp == Impl where K ==> Kernel F SE ==> Symbol P ==> SparseMultivariatePolynomial(R, K) UP ==> SparseUnivariatePolynomial F IR ==> IntegrationResult F ANS ==> Record(special:F, integrand:F) U ==> Union(ANS, "failed") Exp ==> with varselect: (List K, SE) -> List K ++ varselect([k1,...,kn], x) returns the ki which involve x. kmax : List K -> K ++ kmax([k1,...,kn]) returns the top-level ki for integration. ksec : (K, List K, SE) -> K ++ ksec(k, [k1,...,kn], x) returns the second top-level ki ++ after k involving x. union : (List K, List K) -> List K ++ union(l1, l2) returns set-theoretic union of l1 and l2. vark : (List F, SE) -> List K ++ vark([f1,...,fn],x) returns the set-theoretic union of ++ \spad{(varselect(f1,x),...,varselect(fn,x))}. if R has IntegralDomain then removeConstantTerm: (F, SE) -> F ++ removeConstantTerm(f, x) returns f minus any additive constant ++ with respect to x. if R has GcdDomain and F has ElementaryFunctionCategory then mkPrim: (F, SE) -> F ++ mkPrim(f, x) makes the logs in f which are linear in x ++ primitive with respect to x. if R has ConvertibleTo Pattern Integer and R has PatternMatchable Integer and F has LiouvillianFunctionCategory and F has RetractableTo SE then intPatternMatch: (F, SE, (F, SE) -> IR, (F, SE) -> U) -> IR ++ intPatternMatch(f, x, int, pmint) tries to integrate \spad{f} ++ first by using the integration function \spad{int}, and then ++ by using the pattern match intetgration function \spad{pmint} ++ on any remaining unintegrable part. Impl ==> add macro ALGOP == '%alg better?: (K, K) -> Boolean union(l1, l2) == setUnion(l1, l2) varselect(l, x) == [k for k in l | member?(x, variables(k::F))] ksec(k, l, x) == kmax setUnion(remove(k, l), vark(argument k, x)) vark(l, x) == varselect(reduce("setUnion",[kernels f for f in l],empty()$List(K)), x) kmax l == ans := first l for k in rest l repeat if better?(k, ans) then ans := k ans -- true if x should be considered before y in the tower better?(x, y) == height(y) ~= height(x) => height(y) < height(x) has?(operator y, ALGOP) or (is?(y,'exp) and not is?(x, 'exp) and not has?(operator x, ALGOP)) if R has IntegralDomain then removeConstantTerm(f, x) == not freeOf?((den := denom f)::F, x) => f (u := isPlus(num := numer f)) case "failed" => freeOf?(num::F, x) => 0 f ans:P := 0 for term in u::List(P) repeat if not freeOf?(term::F, x) then ans := ans + term ans / den if R has GcdDomain and F has ElementaryFunctionCategory then psimp : (P, SE) -> Record(coef:Integer, logand:F) cont : (P, List K) -> P logsimp : (F, SE) -> F linearLog?: (K, F, SE) -> Boolean logsimp(f, x) == r1 := psimp(numer f, x) r2 := psimp(denom f, x) g := gcd(r1.coef, r2.coef) g * log(r1.logand ** (r1.coef quo g) / r2.logand ** (r2.coef quo g)) cont(p, l) == empty? l => p q := univariate(p, first l) cont(unitNormal(leadingCoefficient q).unit * content q, rest l) linearLog?(k, f, x) == is?(k, 'log) and ((u := retractIfCan(univariate(f,k))@Union(UP,"failed")) case UP) and one?(degree(u::UP)) and not member?(x, variables leadingCoefficient(u::UP)) mkPrim(f, x) == lg := [k for k in kernels f | linearLog?(k, f, x)] eval(f, lg, [logsimp(first argument k, x) for k in lg]) psimp(p, x) == (u := isExpt(p := ((p exquo cont(p, varselect(variables p, x)))::P))) case "failed" => [1, p::F] [u.exponent, u.var::F] if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer) and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then intPatternMatch(f, x, int, pmint) == ir := int(f, x) empty?(l := notelem ir) => ir ans := ratpart ir nl:List(Record(integrand:F, intvar:F)) := empty() lg := logpart ir for rec in l repeat u := pmint(rec.integrand, retract(rec.intvar)) if u case ANS then rc := u::ANS ans := ans + rc.special if rc.integrand ~= 0 then ir0 := intPatternMatch(rc.integrand, x, int, pmint) ans := ans + ratpart ir0 lg := concat(logpart ir0, lg) nl := concat(notelem ir0, nl) else nl := concat(rec, nl) mkAnswer(ans, lg, nl) @ \section{package RDEEF ElementaryRischDE} <<package RDEEF ElementaryRischDE>>= )abbrev package RDEEF ElementaryRischDE ++ Risch differential equation, elementary case. ++ Author: Manuel Bronstein ++ Date Created: 1 February 1988 ++ Date Last Updated: 2 November 1995 ++ Keywords: elementary, function, integration. ElementaryRischDE(R, F): Exports == Implementation where R : Join(GcdDomain, CharacteristicZero, RetractableTo Integer, LinearlyExplicitRingOver Integer) F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField, FunctionSpace R) N ==> NonNegativeInteger Z ==> Integer SE ==> Symbol LF ==> List F K ==> Kernel F LK ==> List K P ==> SparseMultivariatePolynomial(R, K) UP ==> SparseUnivariatePolynomial F RF ==> Fraction UP GP ==> LaurentPolynomial(F, UP) Data ==> List Record(coeff:Z, argument:P) RRF ==> Record(mainpart:F,limitedlogs:List NL) NL ==> Record(coeff:F,logand:F) U ==> Union(RRF, "failed") UF ==> Union(F, "failed") UUP ==> Union(UP, "failed") UGP ==> Union(GP, "failed") URF ==> Union(RF, "failed") UEX ==> Union(Record(ratpart:F, coeff:F), "failed") PSOL==> Record(ans:F, right:F, sol?:Boolean) FAIL==> error("Function not supported by Risch d.e.") Exports ==> with rischDE: (Z, F, F, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL ++ rischDE(n, f, g, x, lim, ext) returns \spad{[y, h, b]} such that ++ \spad{dy/dx + n df/dx y = h} and \spad{b := h = g}. ++ The equation \spad{dy/dx + n df/dx y = g} has no solution ++ if \spad{h \~~= g} (y is a partial solution in that case). ++ Notes: lim is a limited integration function, and ++ ext is an extended integration function. Implementation ==> add macro ALGOP == '%alg import IntegrationTools(R, F) import TranscendentalRischDE(F, UP) import TranscendentalIntegration(F, UP) import PureAlgebraicIntegration(R, F, F) import FunctionSpacePrimitiveElement(R, F) import ElementaryFunctionStructurePackage(R, F) import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, P, F) RF2GP: RF -> GP makeData : (F, SE, K) -> Data normal0 : (Z, F, F, SE) -> UF normalise0: (Z, F, F, SE) -> PSOL normalise : (Z, F, F, F, SE, K, (F, LF) -> U, (F, F) -> UEX) -> PSOL rischDEalg: (Z, F, F, F, K, LK, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL rischDElog: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF rischDEexp: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF polyDElog : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP polyDEexp : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP gpolDEexp : (LK, UP, GP,GP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UGP boundAt0 : (LK, F, Z, Z, SE, K, (F, LF) -> U) -> Z boundInf : (LK, F, Z, Z, Z, SE, K, (F, LF) -> U) -> Z logdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP expdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP logdeg : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP expdeg : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP exppolyint: (UP, (Z, F) -> PSOL) -> UUP RRF2F : RRF -> F logdiff : (List K, List K) -> List K tab:AssociationList(F, Data) := table() RF2GP f == (numer(f)::GP exquo denom(f)::GP)::GP logdiff(twr, bad) == [u for u in twr | is?(u, 'log) and not member?(u, bad)] rischDEalg(n, nfp, f, g, k, l, x, limint, extint) == symbolIfCan(kx := ksec(k, l, x)) case SE => (u := palgRDE(nfp, f, g, kx, k, normal0(n, #1, #2, #3))) case "failed" => [0, 0, false] [u::F, g, true] has?(operator kx, ALGOP) => rec := primitiveElement(kx::F, k::F) y := rootOf(rec.prim) lk:LK := [kx, k] lv:LF := [(rec.pol1) y, (rec.pol2) y] rc := rischDE(n, eval(f, lk, lv), eval(g, lk, lv), x, limint, extint) rc.sol? => [eval(rc.ans, retract(y)@K, rec.primelt), rc.right, true] [0, 0, false] FAIL -- solve y' + n f'y = g for a rational function y rischDE(n, f, g, x, limitedint, extendedint) == zero? g => [0, g, true] zero?(nfp := n * differentiate(f, x)) => (u := limitedint(g, empty())) case "failed" => [0, 0, false] [u.mainpart, g, true] freeOf?(y := g / nfp, x) => [y, g, true] vl := varselect(union(kernels nfp, kernels g), x) symbolIfCan(k := kmax vl) case SE => normalise0(n, f, g, x) is?(k, 'log) or is?(k, 'exp) => normalise(n, nfp, f, g, x, k, limitedint, extendedint) has?(operator k, ALGOP) => rischDEalg(n, nfp, f, g, k, vl, x, limitedint, extendedint) FAIL normal0(n, f, g, x) == rec := normalise0(n, f, g, x) rec.sol? => rec.ans "failed" -- solve y' + n f' y = g -- when f' and g are rational functions over a constant field normalise0(n, f, g, x) == k := kernel(x)@K if (data1 := search(f, tab)) case "failed" then tab.f := data := makeData(f, x, k) else data := data1::Data f' := nfprime := n * differentiate(f, x) p:P := 1 for v in data | (m := n * v.coeff) > 0 repeat p := p * v.argument ** (m::N) f' := f' - m * differentiate(v.argument::F, x) / (v.argument::F) rec := baseRDE(univariate(f', k), univariate(p::F * g, k)) y := multivariate(rec.ans, k) / p::F rec.nosol => [y, differentiate(y, x) + nfprime * y, false] [y, g, true] -- make f weakly normalized, and solve y' + n f' y = g normalise(n, nfp, f, g, x, k, limitedint, extendedint) == if (data1:= search(f, tab)) case "failed" then tab.f := data := makeData(f, x, k) else data := data1::Data p:P := 1 for v in data | (m := n * v.coeff) > 0 repeat p := p * v.argument ** (m::N) f := f - v.coeff * log(v.argument::F) nfp := nfp - m * differentiate(v.argument::F, x) / (v.argument::F) newf := univariate(nfp, k) newg := univariate(p::F * g, k) twr := union(logdiff(tower f, empty()), logdiff(tower g, empty())) ans1 := is?(k, 'log) => rischDElog(twr, newf, newg, x, k, differentiate(#1, differentiate(#1, x), differentiate(k::F, x)::UP), limitedint, extendedint) is?(k, 'exp) => rischDEexp(twr, newf, newg, x, k, differentiate(#1, differentiate(#1, x), monomial(differentiate(first argument k, x), 1)), limitedint, extendedint) ans1 case "failed" => [0, 0, false] [multivariate(ans1::RF, k) / p::F, g, true] -- find the n * log(P) appearing in f, where P is in P, n in Z makeData(f, x, k) == disasters := empty()$Data fnum := numer f fden := denom f for u in varselect(kernels f, x) | is?(u, 'log) repeat logand := first argument u if zero?(degree univariate(fden, u)) and one?(degree(num := univariate(fnum, u))) then cf := (leadingCoefficient num) / fden if (n := retractIfCan(cf)@Union(Z, "failed")) case Z then if degree(numer logand, k) > 0 then disasters := concat([n::Z, numer logand], disasters) if degree(denom logand, k) > 0 then disasters := concat([-(n::Z), denom logand], disasters) disasters rischDElog(twr, f, g, x, theta, driv, limint, extint) == (u := monomRDE(f, g, driv)) case "failed" => "failed" (v := polyDElog(twr, u.a, retract(u.b), retract(u.c), x, theta, driv, limint, extint)) case "failed" => "failed" v::UP / u.t rischDEexp(twr, f, g, x, theta, driv, limint, extint) == (u := monomRDE(f, g, driv)) case "failed" => "failed" (v := gpolDEexp(twr, u.a, RF2GP(u.b), RF2GP(u.c), x, theta, driv, limint, extint)) case "failed" => "failed" convert(v::GP)@RF / u.t::RF polyDElog(twr, aa, bb, cc, x, t, driv, limint, extint) == zero? cc => 0 t' := differentiate(t::F, x) zero? bb => (u := cc exquo aa) case "failed" => "failed" primintfldpoly(u::UP, extint(#1, t'), t') n := degree(cc)::Z - (db := degree(bb)::Z) if ((da := degree(aa)::Z) = db) and (da > 0) then lk0 := tower(f0 := - (leadingCoefficient bb) / (leadingCoefficient aa)) lk1 := logdiff(twr, lk0) (if0 := limint(f0, [first argument u for u in lk1])) case "failed" => error "Risch's theorem violated" (alph := validExponential(lk0, RRF2F(if0::RRF), x)) case F => return (ans := polyDElog(twr, alph::F * aa, differentiate(alph::F, x) * aa + alph::F * bb, cc, x, t, driv, limint, extint)) case "failed" => "failed" alph::F * ans::UP if (da > db + 1) then n := max(0, degree(cc)::Z - da + 1) if (da = db + 1) then i := limint(- (leadingCoefficient bb) / (leadingCoefficient aa), [first argument t]) if not(i case "failed") then r := null(i.limitedlogs) => 0$F i.limitedlogs.first.coeff if (nn := retractIfCan(r)@Union(Z, "failed")) case Z then n := max(nn::Z, n) (v := polyRDE(aa, bb, cc, n, driv)) case ans => v.ans.nosol => "failed" v.ans.ans w := v.eq zero?(w.b) => degree(w.c) > w.m => "failed" (u := primintfldpoly(w.c, extint(#1,t'), t')) case "failed" => "failed" degree(u::UP) > w.m => "failed" w.alpha * u::UP + w.beta (u := logdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint)) case "failed" => "failed" w.alpha * u::UP + w.beta gpolDEexp(twr, a, b, c, x, t, driv, limint, extint) == zero? c => 0 zero? b => (u := c exquo (a::GP)) case "failed" => "failed" expintfldpoly(u::GP, rischDE(#1, first argument t, #2, x, limint, extint)) lb := boundAt0(twr, - coefficient(b, 0) / coefficient(a, 0), nb := order b, nc := order c, x, t, limint) tm := monomial(1, (m := max(0, max(-nb, lb - nc)))::N)$UP (v := polyDEexp(twr,a * tm,lb * differentiate(first argument t, x) * a * tm + retract(b * tm::GP)@UP, retract(c * monomial(1, m - lb))@UP, x, t, driv, limint, extint)) case "failed" => "failed" v::UP::GP * monomial(1, lb) polyDEexp(twr, aa, bb, cc, x, t, driv, limint, extint) == zero? cc => 0 zero? bb => (u := cc exquo aa) case "failed" => "failed" exppolyint(u::UP, rischDE(#1, first argument t, #2, x, limint, extint)) n := boundInf(twr,-leadingCoefficient(bb) / (leadingCoefficient aa), degree(aa)::Z, degree(bb)::Z, degree(cc)::Z, x, t, limint) (v := polyRDE(aa, bb, cc, n, driv)) case ans => v.ans.nosol => "failed" v.ans.ans w := v.eq zero?(w.b) => degree(w.c) > w.m => "failed" (u := exppolyint(w.c, rischDE(#1, first argument t, #2, x, limint, extint))) case "failed" => "failed" w.alpha * u::UP + w.beta (u := expdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint)) case "failed" => "failed" w.alpha * u::UP + w.beta exppolyint(p, rischdiffeq) == (u := expintfldpoly(p::GP, rischdiffeq)) case "failed" => "failed" retractIfCan(u::GP)@Union(UP, "failed") boundInf(twr, f0, da, db, dc, x, t, limitedint) == da < db => dc - db da > db => max(0, dc - da) l1 := logdiff(twr, l0 := tower f0) (if0 := limitedint(f0, [first argument u for u in l1])) case "failed" => error "Risch's theorem violated" (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x)) case F => al := separate(univariate(alpha::F, t))$GP zero?(al.fracPart) and monomial?(al.polyPart) => max(0, max(degree(al.polyPart), dc - db)) dc - db dc - db boundAt0(twr, f0, nb, nc, x, t, limitedint) == nb ~= 0 => min(0, nc - min(0, nb)) l1 := logdiff(twr, l0 := tower f0) (if0 := limitedint(f0, [first argument u for u in l1])) case "failed" => error "Risch's theorem violated" (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x)) case F => al := separate(univariate(alpha::F, t))$GP zero?(al.fracPart) and monomial?(al.polyPart) => min(0, min(degree(al.polyPart), nc)) min(0, nc) min(0, nc) -- case a = 1, deg(B) = 0, B <> 0 -- cancellation at infinity is possible logdegrad(twr, b, c, n, x, t, limitedint, extint) == t' := differentiate(t::F, x) lk1 := logdiff(twr, lk0 := tower(f0 := - b)) (if0 := limitedint(f0, [first argument u for u in lk1])) case "failed" => error "Risch's theorem violated" (alpha := validExponential(lk0, RRF2F(if0::RRF), x)) case F => (u1 := primintfldpoly(inv(alpha::F) * c, extint(#1, t'), t')) case "failed" => "failed" degree(u1::UP)::Z > n => "failed" alpha::F * u1::UP logdeg(c, - if0.mainpart - +/[v.coeff * log(v.logand) for v in if0.limitedlogs], n, x, t', limitedint, extint) -- case a = 1, degree(b) = 0, and (exp integrate b) is not in F -- this implies no cancellation at infinity logdeg(c, f, n, x, t', limitedint, extint) == answr:UP := 0 repeat zero? c => return answr (n < 0) or ((m := degree c)::Z > n) => return "failed" u := rischDE(1, f, leadingCoefficient c, x, limitedint, extint) ~u.sol? => return "failed" zero? m => return(answr + u.ans::UP) n := m::Z - 1 c := (reductum c) - monomial(m::Z * t' * u.ans, (m - 1)::N) answr := answr + monomial(u.ans, m) -- case a = 1, deg(B) = 0, B <> 0 -- cancellation at infinity is possible expdegrad(twr, b, c, n, x, t, limint, extint) == lk1 := logdiff(twr, lk0 := tower(f0 := - b)) (if0 := limint(f0, [first argument u for u in lk1])) case "failed" => error "Risch's theorem violated" intf0 := - if0.mainpart - +/[v.coeff * log(v.logand) for v in if0.limitedlogs] (alpha := validExponential(concat(t, lk0), RRF2F(if0::RRF), x)) case F => al := separate(univariate(alpha::F, t))$GP zero?(al.fracPart) and monomial?(al.polyPart) and (degree(al.polyPart) >= 0) => (u1 := expintfldpoly(c::GP * recip(al.polyPart)::GP, rischDE(#1, first argument t, #2, x, limint, extint))) case "failed" => "failed" degree(u1::GP) > n => "failed" retractIfCan(al.polyPart * u1::GP)@Union(UP, "failed") expdeg(c, intf0, n, x, first argument t, limint,extint) expdeg(c, intf0, n, x, first argument t, limint, extint) -- case a = 1, degree(b) = 0, and (exp integrate b) is not a monomial -- this implies no cancellation at infinity expdeg(c, f, n, x, eta, limitedint, extint) == answr:UP := 0 repeat zero? c => return answr (n < 0) or ((m := degree c)::Z > n) => return "failed" u := rischDE(1, f + m * eta, leadingCoefficient c, x,limitedint,extint) ~u.sol? => return "failed" zero? m => return(answr + u.ans::UP) n := m::Z - 1 c := reductum c answr := answr + monomial(u.ans, m) RRF2F rrf == rrf.mainpart + +/[v.coeff*log(v.logand) for v in rrf.limitedlogs] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- SPAD files for the integration world should be compiled in the -- following order: -- -- intaux rderf intrf curve curvepkg divisor pfo -- intalg intaf efstruc RDEEF intef irexpand integrat <<package INTTOOLS IntegrationTools>> <<package RDEEF ElementaryRischDE>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}