\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra radix.spad} \author{Stephen M. Watt, Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain RADIX RadixExpansion} <<domain RADIX RadixExpansion>>= import Integer import Fraction import List import Stream )abbrev domain RADIX RadixExpansion ++ Author: Stephen M. Watt ++ Date Created: October 1986 ++ Date Last Updated: May 15, 1991 ++ Basic Operations: wholeRadix, fractRadix, wholeRagits, fractRagits ++ Related Domains: BinaryExpansion, DecimalExpansion, HexadecimalExpansion, ++ RadixUtilities ++ Also See: ++ AMS Classifications: ++ Keywords: radix, base, repeating decimal ++ Examples: ++ References: ++ Description: ++ This domain allows rational numbers to be presented as repeating ++ decimal expansions or more generally as repeating expansions in any base. RadixExpansion(bb): Exports == Implementation where bb : Integer I ==> Integer NNI ==> NonNegativeInteger OUT ==> OutputForm RN ==> Fraction Integer ST ==> Stream Integer QuoRem ==> Record(quotient: Integer, remainder: Integer) Exports == Join(QuotientFieldCategory(Integer),_ CoercibleTo Fraction Integer) with fractionPart: % -> Fraction Integer ++ fractionPart(rx) returns the fractional part of a radix expansion. wholeRagits: % -> List Integer ++ wholeRagits(rx) returns the ragits of the integer part ++ of a radix expansion. fractRagits: % -> Stream Integer ++ fractRagits(rx) returns the ragits of the fractional part ++ of a radix expansion. prefixRagits: % -> List Integer ++ prefixRagits(rx) returns the non-cyclic part of the ragits ++ of the fractional part of a radix expansion. ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...}, ++ then \spad{prefixRagits(x)=[1,0]}. cycleRagits: % -> List Integer ++ cycleRagits(rx) returns the cyclic part of the ragits of the ++ fractional part of a radix expansion. ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...}, ++ then \spad{cycleRagits(x) = [7,1,4,2,8,5]}. wholeRadix: List Integer -> % ++ wholeRadix(l) creates an integral radix expansion from a list ++ of ragits. ++ For example, \spad{wholeRadix([1,3,4])} will return \spad{134}. fractRadix: (List Integer, List Integer) -> % ++ fractRadix(pre,cyc) creates a fractional radix expansion ++ from a list of prefix ragits and a list of cyclic ragits. ++ For example, \spad{fractRadix([1],[6])} will return \spad{0.16666666...}. Implementation ==> add -- The efficiency of arithmetic operations is poor. -- Could use a lazy eval where either rational rep -- or list of ragit rep (the current) or both are kept -- as demanded. bb < 2 => error "Radix base must be at least 2" Rep := Record(sgn: Integer, int: List Integer, pfx: List Integer, cyc: List Integer) q: RN qr: QuoRem a,b: % n: I radixInt: (I, I) -> List I radixFrac: (I, I, I) -> Record(pfx: List I, cyc: List I) checkRagits: List I -> Boolean -- Arithmetic operations characteristic == 0 differentiate a == 0 0 == [1, nil(), nil(), nil()] 1 == [1, [1], nil(), nil()] - a == (a = 0 => 0; [-a.sgn, a.int, a.pfx, a.cyc]) a + b == (a::RN + b::RN)::% a - b == (a::RN - b::RN)@RN::% n * a == (n * a::RN)::% a * b == (a::RN * b::RN)::% a / b == (a::RN / b::RN)::% (i:I) / (j:I) == (i/j)@RN :: % a < b == a::RN < b::RN a = b == a.sgn = b.sgn and a.int = b.int and a.pfx = b.pfx and a.cyc = b.cyc numer a == numer(a::RN) denom a == denom(a::RN) -- Algebraic coercions coerce(a):RN == (wholePart a) :: RN + fractionPart a coerce(n):% == n :: RN :: % coerce(q):% == s := 1; if negative? q then (s := -1; q := -q) qr := divide(numer q,denom q) whole := radixInt (qr.quotient,bb) fractn := radixFrac(qr.remainder,denom q,bb) cycle := (fractn.cyc = [0] => nil(); fractn.cyc) [s,whole,fractn.pfx,cycle] retractIfCan(a):Union(RN,"failed") == a::RN retractIfCan(a):Union(I,"failed") == empty?(a.pfx) and empty?(a.cyc) => wholePart a "failed" -- Exported constructor/destructors ceiling a == ceiling(a::RN) floor a == floor(a::RN) wholePart a == n0 := 0 for r in a.int repeat n0 := bb*n0 + r a.sgn*n0 fractionPart(a: %): Fraction Integer == n0 := 0 for r in a.pfx repeat n0 := bb*n0 + r null a.cyc => a.sgn*n0/bb**((#a.pfx)::NNI) n1 := n0 for r in a.cyc repeat n1 := bb*n1 + r n := n1 - n0 d := (bb**((#a.cyc)::NNI) - 1) * bb**((#a.pfx)::NNI) a.sgn*n/d wholeRagits a == a.int fractRagits a == concat(construct(a.pfx)@ST,repeating a.cyc) prefixRagits a == a.pfx cycleRagits a == a.cyc wholeRadix li == checkRagits li [1, li, nil(), nil()] fractRadix(lpfx, lcyc) == checkRagits lpfx; checkRagits lcyc [1, nil(), lpfx, lcyc] -- Output ALPHAS : String := "ABCDEFGHIJKLMNOPQRSTUVWXYZ" intToExpr(i:I): OUT == -- computes a digit for bases between 11 and 36 i < 10 => i :: OUT elt(ALPHAS,(i-10) + minIndex(ALPHAS)) :: OUT exprgroup(le: List OUT): OUT == empty? le => error "exprgroup needs non-null list" empty? rest le => first le abs bb <= 36 => hconcat le blankSeparate le intgroup(li: List I): OUT == empty? li => error "intgroup needs non-null list" empty? rest li => abs bb <= 36 => intToExpr first(li) first(li)::OUT abs bb <= 10 => hconcat [i :: OUT for i in li] abs bb <= 36 => hconcat [intToExpr(i) for i in li] blankSeparate [i :: OUT for i in li] overBar(li: List I): OUT == overbar intgroup li coerce(a): OUT == le : List OUT := nil() if not null a.cyc then le := concat(overBar a.cyc,le) if not null a.pfx then le := concat(intgroup a.pfx,le) if not null le then le := concat("." :: OUT,le) if not null a.int then le := concat(intgroup a.int,le) else le := concat(0 :: OUT,le) rex := exprgroup le if negative? a.sgn then -rex else rex -- Construction utilities checkRagits li == for i in li repeat if negative? i or i >= bb then error "Each ragit (digit) must be between 0 and base-1" true radixInt(n,bas) == rits: List I := nil() while abs n ~= 0 repeat qr := divide(n,bas) n := qr.quotient rits := concat(qr.remainder,rits) rits radixFrac(num,den,bas) == -- Rits is the sequence of quotient/remainder pairs -- in calculating the radix expansion of the rational number. -- We wish to find p and c such that -- rits.i are distinct for 0<=i<=p+c-1 -- rits.i = rits.(i+p) for i>p -- I.e. p is the length of the non-periodic prefix and c is -- the length of the cycle. -- Compute p and c using Floyd's algorithm. -- 1. Find smallest n s.t. rits.n = rits.(2*n) qr := divide(bas * num, den) i : I := 0 qr1i := qr2i := qr rits: List QuoRem := [qr] until qr1i = qr2i repeat qr1i := divide(bas * qr1i.remainder,den) qrt := divide(bas * qr2i.remainder,den) qr2i := divide(bas * qrt.remainder,den) rits := concat(qr2i, concat(qrt, rits)) i := i + 1 rits := reverse! rits n := i -- 2. Find p = first i such that rits.i = rits.(i+n) ritsi := rits ritsn := rits; for i: local in 1..n repeat ritsn := rest ritsn i := 0 while first(ritsi) ~= first(ritsn) repeat ritsi := rest ritsi ritsn := rest ritsn i := i + 1 p := i -- 3. Find c = first i such that rits.p = rits.(p+i) ritsn := rits; for i: local in 1..n repeat ritsn := rest ritsn rn := first ritsn cfound:= false c : I := 0 for i: local in 1..p while not cfound repeat ritsn := rest ritsn if rn = first(ritsn) then c := i cfound := true if not cfound then c := n -- 4. Now produce the lists of ragits. ritspfx: List I := nil() ritscyc: List I := nil() for i: local in 1..p repeat ritspfx := concat(first(rits).quotient, ritspfx) rits := rest rits for i: local in 1..c repeat ritscyc := concat(first(rits).quotient, ritscyc) rits := rest rits [reverse! ritspfx, reverse! ritscyc] @ \section{domain BINARY BinaryExpansion} <<domain BINARY BinaryExpansion>>= )abbrev domain BINARY BinaryExpansion ++ Author: Clifton J. Williamson ++ Date Created: April 26, 1990 ++ Date Last Updated: May 15, 1991 ++ Basic Operations: ++ Related Domains: RadixExpansion ++ Also See: ++ AMS Classifications: ++ Keywords: radix, base, binary ++ Examples: ++ References: ++ Description: ++ This domain allows rational numbers to be presented as repeating ++ binary expansions. BinaryExpansion(): Exports == Implementation where Exports == Join(QuotientFieldCategory(Integer),_ CoercibleTo Fraction Integer,CoercibleTo RadixExpansion(2)) with fractionPart: % -> Fraction Integer ++ fractionPart(b) returns the fractional part of a binary expansion. binary: Fraction Integer -> % ++ binary(r) converts a rational number to a binary expansion. Implementation ==> RadixExpansion(2) add binary r == r :: % coerce(x:%): RadixExpansion(2) == rep x @ \section{domain DECIMAL DecimalExpansion} <<domain DECIMAL DecimalExpansion>>= )abbrev domain DECIMAL DecimalExpansion ++ Author: Stephen M. Watt ++ Date Created: October, 1986 ++ Date Last Updated: May 15, 1991 ++ Basic Operations: ++ Related Domains: RadixExpansion ++ Also See: ++ AMS Classifications: ++ Keywords: radix, base, repeating decimal ++ Examples: ++ References: ++ Description: ++ This domain allows rational numbers to be presented as repeating ++ decimal expansions. DecimalExpansion(): Exports == Implementation where Exports == Join(QuotientFieldCategory(Integer),_ CoercibleTo Fraction Integer,CoercibleTo RadixExpansion 10) with fractionPart: % -> Fraction Integer ++ fractionPart(d) returns the fractional part of a decimal expansion. decimal: Fraction Integer -> % ++ decimal(r) converts a rational number to a decimal expansion. Implementation ==> RadixExpansion(10) add decimal r == r :: % coerce(x:%): RadixExpansion(10) == rep x @ \section{domain HEXADEC HexadecimalExpansion} <<domain HEXADEC HexadecimalExpansion>>= )abbrev domain HEXADEC HexadecimalExpansion ++ Author: Clifton J. Williamson ++ Date Created: April 26, 1990 ++ Date Last Updated: May 15, 1991 ++ Basic Operations: ++ Related Domains: RadixExpansion ++ Also See: ++ AMS Classifications: ++ Keywords: radix, base, hexadecimal ++ Examples: ++ References: ++ Description: ++ This domain allows rational numbers to be presented as repeating ++ hexadecimal expansions. HexadecimalExpansion(): Exports == Implementation where Exports == Join(QuotientFieldCategory(Integer),_ CoercibleTo Fraction Integer,_ CoercibleTo RadixExpansion 16) with fractionPart: % -> Fraction Integer ++ fractionPart(h) returns the fractional part of a hexadecimal expansion. hex: Fraction Integer -> % ++ hex(r) converts a rational number to a hexadecimal expansion. Implementation ==> RadixExpansion(16) add hex r == r :: % coerce(x:%): RadixExpansion(16) == rep x @ \section{package RADUTIL RadixUtilities} <<package RADUTIL RadixUtilities>>= )abbrev package RADUTIL RadixUtilities ++ Author: Stephen M. Watt ++ Date Created: October 1986 ++ Date Last Updated: May 15, 1991 ++ Basic Operations: ++ Related Domains: RadixExpansion ++ Also See: ++ AMS Classifications: ++ Keywords: radix, base, repeading decimal ++ Examples: ++ References: ++ Description: ++ This package provides tools for creating radix expansions. RadixUtilities: Exports == Implementation where Exports ==> with radix: (Fraction Integer,Integer) -> Any ++ radix(x,b) converts x to a radix expansion in base b. Implementation ==> add radix(q, b) == coerce(q :: RadixExpansion(b))$AnyFunctions1(RadixExpansion b) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain RADIX RadixExpansion>> <<domain BINARY BinaryExpansion>> <<domain DECIMAL DecimalExpansion>> <<domain HEXADEC HexadecimalExpansion>> <<package RADUTIL RadixUtilities>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}