\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra quat.spad} \author{Robert S. Sutor} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category QUATCAT QuaternionCategory} <<category QUATCAT QuaternionCategory>>= )abbrev category QUATCAT QuaternionCategory ++ Author: Robert S. Sutor ++ Date Created: 23 May 1990 ++ Change History: ++ 10 September 1990 ++ Basic Operations: (Algebra) ++ abs, conjugate, imagI, imagJ, imagK, norm, quatern, rational, ++ rational?, real ++ Related Constructors: Quaternion, QuaternionCategoryFunctions2 ++ Also See: DivisionRing ++ AMS Classifications: 11R52 ++ Keywords: quaternions, division ring, algebra ++ Description: ++ \spadtype{QuaternionCategory} describes the category of quaternions ++ and implements functions that are not representation specific. QuaternionCategory(R: CommutativeRing): Category == Join(Algebra R, FullyRetractableTo R, DifferentialExtension R, FullyEvalableOver R, FullyLinearlyExplicitRingOver R) with conjugate: $ -> $ ++ conjugate(q) negates the imaginary parts of quaternion \spad{q}. imagI: $ -> R ++ imagI(q) extracts the imaginary i part of quaternion \spad{q}. imagJ: $ -> R ++ imagJ(q) extracts the imaginary j part of quaternion \spad{q}. imagK: $ -> R ++ imagK(q) extracts the imaginary k part of quaternion \spad{q}. norm: $ -> R ++ norm(q) computes the norm of \spad{q} (the sum of the ++ squares of the components). quatern: (R,R,R,R) -> $ ++ quatern(r,i,j,k) constructs a quaternion from scalars. real: $ -> R ++ real(q) extracts the real part of quaternion \spad{q}. if R has EntireRing then EntireRing if R has OrderedSet then OrderedSet if R has Field then DivisionRing if R has ConvertibleTo InputForm then ConvertibleTo InputForm if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has RealNumberSystem then abs : $ -> R ++ abs(q) computes the absolute value of quaternion \spad{q} ++ (sqrt of norm). if R has IntegerNumberSystem then rational? : $ -> Boolean ++ rational?(q) returns {\it true} if all the imaginary ++ parts of \spad{q} are zero and the real part can be ++ converted into a rational number, and {\it false} ++ otherwise. rational : $ -> Fraction Integer ++ rational(q) tries to convert \spad{q} into a ++ rational number. Error: if this is not ++ possible. If \spad{rational?(q)} is true, the ++ conversion will be done and the rational number returned. rationalIfCan: $ -> Union(Fraction Integer, "failed") ++ rationalIfCan(q) returns \spad{q} as a rational number, ++ or "failed" if this is not possible. ++ Note: if \spad{rational?(q)} is true, the conversion ++ can be done and the rational number will be returned. add characteristic() == characteristic()$R conjugate x == quatern(real x, - imagI x, - imagJ x, - imagK x) map(fn, x) == quatern(fn real x, fn imagI x, fn imagJ x, fn imagK x) norm x == real x * real x + imagI x * imagI x + imagJ x * imagJ x + imagK x * imagK x x = y == (real x = real y) and (imagI x = imagI y) and (imagJ x = imagJ y) and (imagK x = imagK y) x + y == quatern(real x + real y, imagI x + imagI y, imagJ x + imagJ y, imagK x + imagK y) x - y == quatern(real x - real y, imagI x - imagI y, imagJ x - imagJ y, imagK x - imagK y) - x == quatern(- real x, - imagI x, - imagJ x, - imagK x) r:R * x:$ == quatern(r * real x, r * imagI x, r * imagJ x, r * imagK x) n:Integer * x:$ == quatern(n * real x, n * imagI x, n * imagJ x, n * imagK x) differentiate(x:$, d:R -> R) == quatern(d real x, d imagI x, d imagJ x, d imagK x) coerce(r:R) == quatern(r,0$R,0$R,0$R) coerce(n:Integer) == quatern(n :: R,0$R,0$R,0$R) one? x == -- one? real x and zero? imagI x and (real x) = 1 and zero? imagI x and zero? imagJ x and zero? imagK x zero? x == zero? real x and zero? imagI x and zero? imagJ x and zero? imagK x retract(x):R == not (zero? imagI x and zero? imagJ x and zero? imagK x) => error "Cannot retract quaternion." real x retractIfCan(x):Union(R,"failed") == not (zero? imagI x and zero? imagJ x and zero? imagK x) => "failed" real x coerce(x:$):OutputForm == part,z : OutputForm y : $ zero? x => (0$R) :: OutputForm not zero?(real x) => y := quatern(0$R,imagI(x),imagJ(x),imagK(x)) zero? y => real(x) :: OutputForm (real(x) :: OutputForm) + (y :: OutputForm) -- we know that the real part is 0 not zero?(imagI(x)) => y := quatern(0$R,0$R,imagJ(x),imagK(x)) z := part := "i"::Symbol::OutputForm -- one? imagI(x) => part (imagI(x) = 1) => part (imagI(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part and i part are 0 not zero?(imagJ(x)) => y := quatern(0$R,0$R,0$R,imagK(x)) z := part := "j"::Symbol::OutputForm -- one? imagJ(x) => part (imagJ(x) = 1) => part (imagJ(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part and i and j parts are 0 part := "k"::Symbol::OutputForm -- one? imagK(x) => part (imagK(x) = 1) => part (imagK(x) :: OutputForm) * part if R has Field then inv x == norm x = 0 => error "This quaternion is not invertible." (inv norm x) * conjugate x if R has ConvertibleTo InputForm then convert(x:$):InputForm == l : List InputForm := [convert("quatern" :: Symbol), convert(real x)$R, convert(imagI x)$R, convert(imagJ x)$R, convert(imagK x)$R] convert(l)$InputForm if R has OrderedSet then x < y == real x = real y => imagI x = imagI y => imagJ x = imagJ y => imagK x < imagK y imagJ x < imagJ y imagI x < imagI y real x < real y if R has RealNumberSystem then abs x == sqrt norm x if R has IntegerNumberSystem then rational? x == (zero? imagI x) and (zero? imagJ x) and (zero? imagK x) rational x == rational? x => rational real x error "Not a rational number" rationalIfCan x == rational? x => rational real x "failed" @ \section{domain QUAT Quaternion} <<domain QUAT Quaternion>>= )abbrev domain QUAT Quaternion ++ Author: Robert S. Sutor ++ Date Created: 23 May 1990 ++ Change History: ++ 10 September 1990 ++ Basic Operations: (Algebra) ++ abs, conjugate, imagI, imagJ, imagK, norm, quatern, rational, ++ rational?, real ++ Related Constructors: QuaternionCategoryFunctions2 ++ Also See: QuaternionCategory, DivisionRing ++ AMS Classifications: 11R52 ++ Keywords: quaternions, division ring, algebra ++ Description: \spadtype{Quaternion} implements quaternions over a ++ commutative ring. The main constructor function is \spadfun{quatern} ++ which takes 4 arguments: the real part, the i imaginary part, the j ++ imaginary part and the k imaginary part. Quaternion(R:CommutativeRing): QuaternionCategory(R) == add Rep := Record(r:R,i:R,j:R,k:R) 0 == [0,0,0,0] 1 == [1,0,0,0] a,b,c,d : R x,y : $ real x == x.r imagI x == x.i imagJ x == x.j imagK x == x.k quatern(a,b,c,d) == [a,b,c,d] x * y == [x.r*y.r-x.i*y.i-x.j*y.j-x.k*y.k, x.r*y.i+x.i*y.r+x.j*y.k-x.k*y.j, x.r*y.j+x.j*y.r+x.k*y.i-x.i*y.k, x.r*y.k+x.k*y.r+x.i*y.j-x.j*y.i] @ \section{package QUATCT2 QuaternionCategoryFunctions2} <<package QUATCT2 QuaternionCategoryFunctions2>>= )abbrev package QUATCT2 QuaternionCategoryFunctions2 ++ Author: Robert S. Sutor ++ Date Created: 23 May 1990 ++ Change History: ++ 23 May 1990 ++ Basic Operations: map ++ Related Constructors: QuaternionCategory, Quaternion ++ Also See: ++ AMS Classifications: 11R52 ++ Keywords: quaternions, division ring, map ++ Description: ++ \spadtype{QuaternionCategoryFunctions2} implements functions between ++ two quaternion domains. The function \spadfun{map} is used by ++ the system interpreter to coerce between quaternion types. QuaternionCategoryFunctions2(QR,R,QS,S) : Exports == Implementation where R : CommutativeRing S : CommutativeRing QR : QuaternionCategory R QS : QuaternionCategory S Exports == with map: (R -> S, QR) -> QS ++ map(f,u) maps f onto the component parts of the quaternion ++ u. Implementation == add map(fn : R -> S, u : QR): QS == quatern(fn real u, fn imagI u, fn imagJ u, fn imagK u)$QS @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category QUATCAT QuaternionCategory>> <<domain QUAT Quaternion>> <<package QUATCT2 QuaternionCategoryFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}