\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra pseudolin.spad} \author{Bruno Zuercher} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package PSEUDLIN PseudoLinearNormalForm} <<package PSEUDLIN PseudoLinearNormalForm>>= )abbrev package PSEUDLIN PseudoLinearNormalForm ++ Normal forms of pseudo-linear operators ++ Author: Bruno Zuercher ++ Date Created: November 1993 ++ Date Last Updated: 12 April 1994 ++ Description: ++ PseudoLinearNormalForm provides a function for computing a block-companion ++ form for pseudo-linear operators. PseudoLinearNormalForm(K:Field): Exports == Implementation where ER ==> Record(C: Matrix K, g: Vector K) REC ==> Record(R: Matrix K, A: Matrix K, Ainv: Matrix K) Exports ==> with normalForm: (Matrix K, Automorphism K, K -> K) -> REC ++ normalForm(M, sig, der) returns \spad{[R, A, A^{-1}]} such that ++ the pseudo-linear operator whose matrix in the basis \spad{y} is ++ \spad{M} had matrix \spad{R} in the basis \spad{z = A y}. ++ \spad{der} is a \spad{sig}-derivation. changeBase: (Matrix K, Matrix K, Automorphism K, K -> K) -> Matrix K ++ changeBase(M, A, sig, der): computes the new matrix of a pseudo-linear ++ transform given by the matrix M under the change of base A companionBlocks: (Matrix K, Vector K) -> List ER ++ companionBlocks(m, v) returns \spad{[[C_1, g_1],...,[C_k, g_k]]} ++ such that each \spad{C_i} is a companion block and ++ \spad{m = diagonal(C_1,...,C_k)}. Implementation ==> add normalForm0: (Matrix K, Automorphism K, Automorphism K, K -> K) -> REC mulMatrix: (Integer, Integer, K) -> Matrix K -- mulMatrix(N, i, a): under a change of base with the resulting matrix of -- size N*N the following operations are performed: -- D1: column i will be multiplied by sig(a) -- D2: row i will be multiplied by 1/a -- D3: addition of der(a)/a to the element at position (i,i) addMatrix: (Integer, Integer, Integer, K) -> Matrix K -- addMatrix(N, i, k, a): under a change of base with the resulting matrix -- of size N*N the following operations are performed: -- C1: addition of column i multiplied by sig(a) to column k -- C2: addition of row k multiplied by -a to row i -- C3: addition of -a*der(a) to the element at position (i,k) permutationMatrix: (Integer, Integer, Integer) -> Matrix K -- permutationMatrix(N, i, k): under a change of base with the resulting -- permutation matrix of size N*N the following operations are performed: -- P1: columns i and k will be exchanged -- P2: rows i and k will be exchanged inv: Matrix K -> Matrix K -- inv(M): computes the inverse of a invertable matrix M. -- avoids possible type conflicts inv m == inverse(m) :: Matrix K changeBase(M, A, sig, der) == inv(A) * (M * map(sig #1, A) + map(der, A)) normalForm(M, sig, der) == normalForm0(M, sig, inv sig, der) companionBlocks(R, w) == -- decomposes the rational matrix R into single companion blocks -- and the inhomogenity w as well i:Integer := 1 n := nrows R l:List(ER) := empty() while i <= n repeat j := i while j+1 <= n and R(j,j+1) = 1 repeat j := j+1 --split block now v:Vector K := new((j-i+1)::NonNegativeInteger, 0) for k in i..j repeat v(k-i+1) := w k l := concat([subMatrix(R,i,j,i,j), v], l) i := j+1 l normalForm0(M, sig, siginv, der) == -- the changes of base will be incremented in B and Binv, -- where B**(-1)=Binv; E defines an elementary matrix B, Binv, E : Matrix K recOfMatrices : REC N := nrows M B := diagonalMatrix [1 for k in 1..N] Binv := copy B -- avoid unnecessary recursion if diagonal?(M) then return [M, B, Binv] i : Integer := 1 while i < N repeat j := i + 1 while j <= N and M(i, j) = 0 repeat j := j + 1 if j <= N then -- expand companionblock by lemma 5 if j ^= i+1 then -- perform first a permutation E := permutationMatrix(N, i+1, j) M := changeBase(M, E, sig, der) B := B*E Binv := E*Binv -- now is M(i, i+1) ^= 0 E := mulMatrix(N, i+1, siginv inv M(i,i+1)) M := changeBase(M, E, sig, der) B := B*E Binv := inv(E)*Binv for j in 1..N repeat if j ^= i+1 then E := addMatrix(N, i+1, j, siginv(-M(i,j))) M := changeBase(M, E, sig, der) B := B*E Binv := inv(E)*Binv i := i + 1 else -- apply lemma 6 for j in i..2 by -1 repeat for k in (i+1)..N repeat E := addMatrix(N, k, j-1, M(k,j)) M := changeBase(M, E, sig, der) B := B*E Binv := inv(E)*Binv j := i + 1 while j <= N and M(j,1) = 0 repeat j := j + 1 if j <= N then -- expand companionblock by lemma 8 E := permutationMatrix(N, 1, j) M := changeBase(M, E, sig, der) B := B*E Binv := E*Binv -- start again to establish rational form i := 1 else -- split a direct factor recOfMatrices := normalForm(subMatrix(M, i+1, N, i+1, N), sig, der) setsubMatrix!(M, i+1, i+1, recOfMatrices.R) E := diagonalMatrix [1 for k in 1..N] setsubMatrix!(E, i+1, i+1, recOfMatrices.A) B := B*E setsubMatrix!(E, i+1, i+1, recOfMatrices.Ainv) Binv := E*Binv -- M in blockdiagonalform, stop program i := N [M, B, Binv] mulMatrix(N, i, a) == M : Matrix K := diagonalMatrix [1 for j in 1..N] M(i, i) := a M addMatrix(N, i, k, a) == A : Matrix K := diagonalMatrix [1 for j in 1..N] A(i, k) := a A permutationMatrix(N, i, k) == P : Matrix K := diagonalMatrix [1 for j in 1..N] P(i, i) := P(k, k) := 0 P(i, k) := P(k, i) := 1 P @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package PSEUDLIN PseudoLinearNormalForm>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}