\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra prtition.spad} \author{William H. Burge} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain PRTITION Partition} <<domain PRTITION Partition>>= )abbrev domain PRTITION Partition ++ Domain for partitions of positive integers ++ Author: William H. Burge ++ Date Created: 29 October 1987 ++ Date Last Updated: 23 Sept 1991 ++ Keywords: ++ Examples: ++ References: Partition: Exports == Implementation where ++ Partition is an OrderedCancellationAbelianMonoid which is used ++ as the basis for symmetric polynomial representation of the ++ sums of powers in SymmetricPolynomial. Thus, \spad{(5 2 2 1)} will ++ represent \spad{s5 * s2**2 * s1}. L ==> List I ==> Integer OUT ==> OutputForm NNI ==> NonNegativeInteger UN ==> Union(%,"failed") Exports ==> Join(OrderedCancellationAbelianMonoid, ConvertibleTo List Integer) with partition: L I -> % ++ partition(li) converts a list of integers li to a partition powers: L I -> L L I ++ powers(li) returns a list of 2-element lists. For each 2-element ++ list, the first element is an entry of li and the second ++ element is the multiplicity with which the first element ++ occurs in li. There is a 2-element list for each value ++ occurring in l. pdct: % -> I ++ \spad{pdct(a1**n1 a2**n2 ...)} returns ++ \spad{n1! * a1**n1 * n2! * a2**n2 * ...}. ++ This function is used in the package \spadtype{CycleIndicators}. conjugate: % -> % ++ conjugate(p) returns the conjugate partition of a partition p coerce:% -> List Integer ++ coerce(p) coerces a partition into a list of integers Implementation ==> add import PartitionsAndPermutations Rep := List Integer 0 == nil() coerce (s:%) == s pretend List Integer convert x == copy(x pretend L I) partition list == sort(#2 < #1,list) x < y == empty? x => not empty? y empty? y => false first x = first y => rest x < rest y first x < first y x = y == EQUAL(x,y)$Lisp -- empty? x => empty? y -- empty? y => false -- first x = first y => rest x = rest y -- false x + y == empty? x => y empty? y => x first x > first y => concat(first x,rest(x) + y) concat(first y,x + rest(y)) n:NNI * x:% == (zero? n => 0; x + (subtractIfCan(n,1) :: NNI) * x) dp: (I,%) -> % dp(i,x) == empty? x => 0 first x = i => rest x concat(first x,dp(i,rest x)) remv: (I,%) -> UN remv(i,x) == (member?(i,x) => dp(i,x); "failed") subtractIfCan(x, y) == empty? x => empty? y => 0 "failed" empty? y => x (aa := remv(first y,x)) case "failed" => "failed" subtractIfCan((aa :: %), rest y) li1 : L I --!! 'bite' won't compile without this bite: (I,L I) -> L I bite(i,li) == empty? li => concat(0,nil()) first li = i => li1 := bite(i,rest li) concat(first(li1) + 1,rest li1) concat(0,li) li : L I --!! 'powers' won't compile without this powers l == empty? l => nil() li := bite(first l,rest l) concat([first l,first(li) + 1],powers(rest li)) conjugate x == conjugate(x pretend Rep)$PartitionsAndPermutations mkterm: (I,I) -> OUT mkterm(i1,i2) == i2 = 1 => (i1 :: OUT) ** (" " :: OUT) (i1 :: OUT) ** (i2 :: OUT) mkexp1: L L I -> L OUT mkexp1 lli == empty? lli => nil() li := first lli empty?(rest lli) and second(li) = 1 => concat(first(li) :: OUT,nil()) concat(mkterm(first li,second li),mkexp1(rest lli)) coerce(x:%):OUT == empty? (x pretend Rep) => coerce(x pretend Rep)$Rep paren(reduce("*",mkexp1(powers(x pretend Rep)))) pdct x == */[factorial(second a) * (first(a) ** (second(a) pretend NNI)) for a in powers(x pretend Rep)] @ \section{domain SYMPOLY SymmetricPolynomial} <<domain SYMPOLY SymmetricPolynomial>>= )abbrev domain SYMPOLY SymmetricPolynomial ++ Description: ++ This domain implements symmetric polynomial SymmetricPolynomial(R:Ring) == PolynomialRing(R,Partition) add Term:= Record(k:Partition,c:R) Rep:= List Term -- override PR implementation because coeff. arithmetic too expensive (??) if R has EntireRing then (p1:%) * (p2:%) == null p1 => 0 null p2 => 0 zero?(p1.first.k) => p1.first.c * p2 -- one? p2 => p1 (p2 = 1) => p1 +/[[[t1.k+t2.k,t1.c*t2.c]$Term for t2 in p2] for t1 in reverse(p1)] -- This 'reverse' is an efficiency improvement: -- reduces both time and space [Abbott/Bradford/Davenport] else (p1:%) * (p2:%) == null p1 => 0 null p2 => 0 zero?(p1.first.k) => p1.first.c * p2 -- one? p2 => p1 (p2 = 1) => p1 +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ^= 0] for t1 in reverse(p1)] -- This 'reverse' is an efficiency improvement: -- reduces both time and space [Abbott/Bradford/Davenport] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain PRTITION Partition>> <<domain SYMPOLY SymmetricPolynomial>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}