\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra prtition.spad}
\author{William H. Burge}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain PRTITION Partition}
<<domain PRTITION Partition>>=
)abbrev domain PRTITION Partition
++ Domain for partitions of positive integers
++ Author: William H. Burge
++ Date Created: 29 October 1987
++ Date Last Updated: 23 Sept 1991
++ Keywords:
++ Examples:
++ References:
Partition: Exports == Implementation where
  ++ Partition is an OrderedCancellationAbelianMonoid which is used
  ++ as the basis for symmetric polynomial representation of the
  ++ sums of powers in SymmetricPolynomial.  Thus, \spad{(5 2 2 1)} will
  ++ represent \spad{s5 * s2**2 * s1}.
  L   ==> List
  I   ==> Integer
  OUT ==> OutputForm
  NNI ==> NonNegativeInteger
  UN  ==> Union(%,"failed")
 
  Exports ==> Join(OrderedCancellationAbelianMonoid,
                   ConvertibleTo List Integer) with
    partition: L I -> %
      ++ partition(li) converts a list of integers li to a partition
    powers: L I -> L L I
      ++ powers(li) returns a list of 2-element lists.  For each 2-element
      ++ list, the first element is an entry of li and the second
      ++ element is the multiplicity with which the first element
      ++ occurs in li.  There is a 2-element list for each value
      ++ occurring in l.
    pdct: % -> I
      ++ \spad{pdct(a1**n1 a2**n2 ...)} returns 
      ++ \spad{n1! * a1**n1 * n2! * a2**n2 * ...}.
      ++ This function is used in the package \spadtype{CycleIndicators}.
    conjugate: % -> %
      ++ conjugate(p) returns the conjugate partition of a partition p
    coerce:% -> List Integer
      ++ coerce(p) coerces a partition into a list of integers
 
  Implementation ==> add
 
    import PartitionsAndPermutations
 
    Rep := List Integer
    0 == nil()
 
    coerce (s:%) == s pretend List Integer
    convert x == copy(x pretend L I)
 
    partition list == sort(#2 < #1,list)
 
    x < y ==
      empty? x => not empty? y
      empty? y => false
      first x = first y => rest x < rest y
      first x < first y
 
    x = y ==
	EQUAL(x,y)$Lisp
--      empty? x => empty? y
--      empty? y => false
--      first x = first y => rest x = rest y
--      false
 
    x + y ==
      empty? x => y
      empty? y => x
      first x > first y => concat(first x,rest(x) + y)
      concat(first y,x + rest(y))
    n:NNI * x:% == (zero? n => 0; x + (subtractIfCan(n,1) :: NNI) * x)
 
    dp: (I,%) -> %
    dp(i,x) ==
      empty? x => 0
      first x = i => rest x
      concat(first x,dp(i,rest x))
 
    remv: (I,%) -> UN
    remv(i,x) == (member?(i,x) => dp(i,x); "failed")
 
    subtractIfCan(x, y) ==
      empty? x =>
        empty? y => 0
        "failed"
      empty? y => x
      (aa := remv(first y,x)) case "failed" => "failed"
      subtractIfCan((aa :: %), rest y)
 
    li1 : L I  --!! 'bite' won't compile without this
    bite: (I,L I) -> L I
    bite(i,li) ==
      empty? li => concat(0,nil())
      first li = i =>
        li1 := bite(i,rest li)
        concat(first(li1) + 1,rest li1)
      concat(0,li)
 
    li : L I  --!!  'powers' won't compile without this
    powers l ==
      empty? l => nil()
      li := bite(first l,rest l)
      concat([first l,first(li) + 1],powers(rest li))
 
    conjugate x == conjugate(x pretend Rep)$PartitionsAndPermutations
 
    mkterm: (I,I) -> OUT
    mkterm(i1,i2) ==
      i2 = 1 => (i1 :: OUT) ** (" " :: OUT)
      (i1 :: OUT) ** (i2 :: OUT)
 
    mkexp1: L L I -> L OUT
    mkexp1 lli ==
      empty? lli => nil()
      li := first lli
      empty?(rest lli) and second(li) = 1 =>
        concat(first(li) :: OUT,nil())
      concat(mkterm(first li,second li),mkexp1(rest lli))
 
    coerce(x:%):OUT == 
        empty? (x pretend Rep) => coerce(x pretend Rep)$Rep
        paren(reduce("*",mkexp1(powers(x pretend Rep))))
 
    pdct x ==
      */[factorial(second a) * (first(a) ** (second(a) pretend NNI))
                 for a in powers(x pretend Rep)]

@
\section{domain SYMPOLY SymmetricPolynomial}
<<domain SYMPOLY SymmetricPolynomial>>=
)abbrev domain SYMPOLY SymmetricPolynomial
++ Description:
++ This domain implements symmetric polynomial
SymmetricPolynomial(R:Ring) == PolynomialRing(R,Partition) add
       Term:=  Record(k:Partition,c:R)
       Rep:=  List Term

-- override PR implementation because coeff. arithmetic too expensive (??)

       if R has EntireRing then
         (p1:%) * (p2:%)  ==
            null p1 => 0
            null p2 => 0
            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
            (p2 = 1) => p1
            +/[[[t1.k+t2.k,t1.c*t2.c]$Term for t2 in p2]
                   for t1 in reverse(p1)]
                   -- This 'reverse' is an efficiency improvement:
                   -- reduces both time and space [Abbott/Bradford/Davenport]
        else
         (p1:%) * (p2:%)  ==
            null p1 => 0
            null p2 => 0
            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
            (p2 = 1) => p1
            +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ^= 0]
                 for t1 in reverse(p1)]
                  -- This 'reverse' is an efficiency improvement:
                  -- reduces both time and space [Abbott/Bradford/Davenport]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<domain PRTITION Partition>>
<<domain SYMPOLY SymmetricPolynomial>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}