\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra primelt.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package PRIMELT PrimitiveElement} <<package PRIMELT PrimitiveElement>>= )abbrev package PRIMELT PrimitiveElement ++ Computation of primitive elements. ++ Author: Manuel Bronstein ++ Date Created: 6 Jun 1990 ++ Date Last Updated: 25 April 1991 ++ Description: ++ PrimitiveElement provides functions to compute primitive elements ++ in algebraic extensions; ++ Keywords: algebraic, extension, primitive. PrimitiveElement(F): Exports == Implementation where F : Join(Field, CharacteristicZero) SY ==> Symbol P ==> Polynomial F UP ==> SparseUnivariatePolynomial F RC ==> Record(coef1: Integer, coef2: Integer, prim:UP) REC ==> Record(coef: List Integer, poly:List UP, prim: UP) Exports ==> with primitiveElement: (P, SY, P, SY) -> RC ++ primitiveElement(p1, a1, p2, a2) returns \spad{[c1, c2, q]} ++ such that \spad{k(a1, a2) = k(a)} ++ where \spad{a = c1 a1 + c2 a2, and q(a) = 0}. ++ The pi's are the defining polynomials for the ai's. ++ The p2 may involve a1, but p1 must not involve a2. ++ This operation uses \spadfun{resultant}. primitiveElement: (List P, List SY) -> REC ++ primitiveElement([p1,...,pn], [a1,...,an]) returns ++ \spad{[[c1,...,cn], [q1,...,qn], q]} ++ such that then \spad{k(a1,...,an) = k(a)}, ++ where \spad{a = a1 c1 + ... + an cn}, ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}. ++ The pi's are the defining polynomials for the ai's. ++ This operation uses the technique of ++ \spadglossSee{groebner bases}{Groebner basis}. primitiveElement: (List P, List SY, SY) -> REC ++ primitiveElement([p1,...,pn], [a1,...,an], a) returns ++ \spad{[[c1,...,cn], [q1,...,qn], q]} ++ such that then \spad{k(a1,...,an) = k(a)}, ++ where \spad{a = a1 c1 + ... + an cn}, ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}. ++ The pi's are the defining polynomials for the ai's. ++ This operation uses the technique of ++ \spadglossSee{groebner bases}{Groebner basis}. Implementation ==> add import PolyGroebner(F) multi : (UP, SY) -> P randomInts: (NonNegativeInteger, NonNegativeInteger) -> List Integer findUniv : (List P, SY, SY) -> Union(P, "failed") incl? : (List SY, List SY) -> Boolean triangularLinearIfCan:(List P,List SY,SY) -> Union(List UP,"failed") innerPrimitiveElement: (List P, List SY, SY) -> REC multi(p, v) == multivariate(map(#1, p), v) randomInts(n, m) == [symmetricRemainder(random()$Integer, m) for i in 1..n] incl?(a, b) == every?(member?(#1, b), a) primitiveElement(l, v) == primitiveElement(l, v, new()$SY) primitiveElement(p1, a1, p2, a2) == -- one? degree(p2, a1) => [0, 1, univariate resultant(p1, p2, a1)] (degree(p2, a1) = 1) => [0, 1, univariate resultant(p1, p2, a1)] u := (new()$SY)::P b := a2::P for i in 10.. repeat c := symmetricRemainder(random()$Integer, i) w := u - c * b r := univariate resultant(eval(p1, a1, w), eval(p2, a1, w), a2) not zero? r and r = squareFreePart r => return [1, c, r] findUniv(l, v, opt) == for p in l repeat degree(p, v) > 0 and incl?(variables p, [v, opt]) => return p "failed" triangularLinearIfCan(l, lv, w) == (u := findUniv(l, w, w)) case "failed" => "failed" pw := univariate(u::P) ll := nil()$List(UP) for v in lv repeat ((u := findUniv(l, v, w)) case "failed") or (degree(p := univariate(u::P, v)) ~= 1) => return "failed" (bc := extendedEuclidean(univariate leadingCoefficient p, pw,1)) case "failed" => error "Should not happen" ll := concat(map(#1, (- univariate(coefficient(p,0)) * bc.coef1) rem pw), ll) concat(map(#1, pw), reverse_! ll) primitiveElement(l, vars, uu) == u := uu::P vv := [v::P for v in vars] elim := concat(vars, uu) w := uu::P n := #l for i in 10.. repeat cf := randomInts(n, i) (tt := triangularLinearIfCan(lexGroebner( concat(w - +/[c * t for c in cf for t in vv], l), elim), vars, uu)) case List(UP) => ltt := tt::List(UP) return([cf, rest ltt, first ltt]) @ \section{package FSPRMELT FunctionSpacePrimitiveElement} <<package FSPRMELT FunctionSpacePrimitiveElement>>= )abbrev package FSPRMELT FunctionSpacePrimitiveElement ++ Computation of primitive elements. ++ Author: Manuel Bronstein ++ Date Created: 6 Jun 1990 ++ Date Last Updated: 25 April 1991 ++ Description: ++ FunctionsSpacePrimitiveElement provides functions to compute ++ primitive elements in functions spaces; ++ Keywords: algebraic, extension, primitive. FunctionSpacePrimitiveElement(R, F): Exports == Implementation where R: Join(IntegralDomain, OrderedSet, CharacteristicZero) F: FunctionSpace R SY ==> Symbol P ==> Polynomial F K ==> Kernel F UP ==> SparseUnivariatePolynomial F REC ==> Record(primelt:F, poly:List UP, prim:UP) Exports ==> with primitiveElement: List F -> Record(primelt:F, poly:List UP, prim:UP) ++ primitiveElement([a1,...,an]) returns \spad{[a, [q1,...,qn], q]} ++ such that then \spad{k(a1,...,an) = k(a)}, ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}. ++ This operation uses the technique of ++ \spadglossSee{groebner bases}{Groebner basis}. if F has AlgebraicallyClosedField then primitiveElement: (F,F)->Record(primelt:F,pol1:UP,pol2:UP,prim:UP) ++ primitiveElement(a1, a2) returns \spad{[a, q1, q2, q]} ++ such that \spad{k(a1, a2) = k(a)}, ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}. ++ The minimal polynomial for a2 may involve a1, but the ++ minimal polynomial for a1 may not involve a2; ++ This operations uses \spadfun{resultant}. Implementation ==> add import PrimitiveElement(F) import AlgebraicManipulations(R, F) import PolynomialCategoryLifting(IndexedExponents K, K, R, SparseMultivariatePolynomial(R, K), P) F2P: (F, List SY) -> P K2P: (K, List SY) -> P F2P(f, l) == inv(denom(f)::F) * map(K2P(#1, l), #1::F::P, numer f) K2P(k, l) == ((v := symbolIfCan k) case SY) and member?(v::SY, l) => v::SY::P k::F::P primitiveElement l == u := string(uu := new()$SY) vars := [concat(u, string i)::SY for i in 1..#l] vv := [kernel(v)$K :: F for v in vars] kers := [retract(a)@K for a in l] pols := [F2P(subst(ratDenom((minPoly k) v, kers), kers, vv), vars) for k in kers for v in vv] rec := primitiveElement(pols, vars, uu) [+/[c * a for c in rec.coef for a in l], rec.poly, rec.prim] if F has AlgebraicallyClosedField then import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, SparseMultivariatePolynomial(R, K), F) F2UP: (UP, K, UP) -> UP getpoly: (UP, F) -> UP F2UP(p, k, q) == ans:UP := 0 while not zero? p repeat f := univariate(leadingCoefficient p, k) ans := ans + ((numer f) q) * monomial(inv(retract(denom f)@F), degree p) p := reductum p ans primitiveElement(a1, a2) == a := (aa := new()$SY)::F b := (bb := new()$SY)::F l := [aa, bb]$List(SY) p1 := minPoly(k1 := retract(a1)@K) p2 := map(subst(ratDenom(#1, [k1]), [k1], [a]), minPoly(retract(a2)@K)) rec := primitiveElement(F2P(p1 a, l), aa, F2P(p2 b, l), bb) w := rec.coef1 * a1 + rec.coef2 * a2 g := rootOf(rec.prim) zero?(rec.coef1) => c2g := inv(rec.coef2 :: F) * g r := gcd(p1, univariate(p2 c2g, retract(a)@K, p1)) q := getpoly(r, g) [w, q, rec.coef2 * monomial(1, 1)$UP, rec.prim] ic1 := inv(rec.coef1 :: F) gg := (ic1 * g)::UP - monomial(rec.coef2 * ic1, 1)$UP kg := retract(g)@K r := gcd(p1 gg, F2UP(p2, retract(a)@K, gg)) q := getpoly(r, g) [w, monomial(ic1, 1)$UP - rec.coef2 * ic1 * q, q, rec.prim] getpoly(r, g) == -- one? degree r => (degree r = 1) => k := retract(g)@K univariate(-coefficient(r,0)/leadingCoefficient r,k,minPoly k) error "GCD not of degree 1" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package PRIMELT PrimitiveElement>> <<package FSPRMELT FunctionSpacePrimitiveElement>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}