\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra poly.spad}
\author{Dave Barton, James Davenport, Barry Trager, Patrizia Gianni, Marc Moreno Maza}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain FM FreeModule}
<<domain FM FreeModule>>=
)abbrev domain FM FreeModule
++ Author: Dave Barton, James Davenport, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: BiModule(R,R)
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A bi-module is a free module
++ over a ring with generators indexed by an ordered set.
++ Each element can be expressed as a finite linear combination of
++ generators. Only non-zero terms are stored.

FreeModule(R:Ring,S:OrderedType):
        Join(BiModule(R,R),IndexedDirectProductCategory(R,S)) with
    if R has CommutativeRing then Module(R)
 == IndexedDirectProductAbelianGroup(R,S) add
    --representations
       Term:=  Record(k:S,c:R)
       Rep:=  List Term
    --declarations
       x,y: %
       r: R
       n: Integer
       f: R -> R
       s: S
    --define
       if R has EntireRing then 
         r * x  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,r*u.c] for u in x ]
       else
         r * x  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,a] for u in x | (a:=r*u.c) ~= 0$R]
       if R has EntireRing then
         x * r  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,u.c*r] for u in x ]
       else
         x * r  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,a] for u in x | (a:=u.c*r) ~= 0$R]

       if S has CoercibleTo OutputForm then
         coerce(x) : OutputForm ==
           null x => (0$R) :: OutputForm
           le : List OutputForm := nil
           for rec in reverse x repeat
             rec.c = 1 => le := cons(rec.k :: OutputForm, le)
             le := cons(rec.c :: OutputForm *  rec.k :: OutputForm, le)
           reduce("+",le)

@
\section{domain PR PolynomialRing}
<<domain PR PolynomialRing>>=
)abbrev domain PR PolynomialRing
++ Author: Dave Barton, James Davenport, Barry Trager
++ Date Created:
++ Date Last Updated: 14.08.2000. Improved exponentiation [MMM/TTT]
++ Basic Functions: Ring, degree, coefficient, monomial, reductum
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents generalized polynomials with coefficients
++ (from a not necessarily commutative ring), and terms
++ indexed by their exponents (from an arbitrary ordered abelian monoid).
++ This type is used, for example,
++ by the \spadtype{DistributedMultivariatePolynomial} domain where
++ the exponent domain is a direct product of non negative integers.

PolynomialRing(R:Ring,E:OrderedAbelianMonoid): T == C
 where
  T == FiniteAbelianMonoidRing(R,E) with
    --assertions
       if R has IntegralDomain and E has CancellationAbelianMonoid then
            fmecg: (%,E,R,%) -> %
            ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
       if R has canonicalUnitNormal then canonicalUnitNormal
          ++ canonicalUnitNormal guarantees that the function
          ++ unitCanonical returns the same representative for all
          ++ associates of any particular element.
       
  C == FreeModule(R,E) add
    --representations
       Term:=  Record(k:E,c:R)
       Rep:=  List Term


    --declarations
       x,y,p,p1,p2: %
       n: Integer
       nn: NonNegativeInteger
       np: PositiveInteger
       e: E
       r: R
    --local operations
       1  == [[0$E,1$R]]
       characteristic  == characteristic$R
       numberOfMonomials x  == (# x)$Rep
       degree p == if null p then 0 else p.first.k
       minimumDegree p == if null p then 0 else (last p).k
       leadingCoefficient p == if null p then 0$R else p.first.c
       leadingMonomial p == if null p then 0 else [p.first]
       reductum p == if null p then p else p.rest
       retractIfCan(p:%):Union(R,"failed") ==
         null p => 0$R
         not null p.rest => "failed"
         zero?(p.first.k) => p.first.c
         "failed" 
       coefficient(p,e)  ==
          for tm in p repeat
            tm.k=e => return tm.c
            tm.k < e => return 0$R
          0$R
       recip(p) ==
           null p => "failed"
           p.first.k > 0$E => "failed"
           (u:=recip(p.first.c)) case "failed" => "failed"
           (u::R)::%

       coerce(r) == if zero? r then 0$% else [[0$E,r]]
       coerce(n) == (n::R)::%

       ground?(p): Boolean == empty? p or (empty? rest p and zero? degree p)

       qsetrest!: (Rep, Rep) -> Rep
       qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp

       entireRing? := R has EntireRing

       --- term * polynomial 
       termTimes: (R, E, Term) -> Term
       termTimes(r: R, e: E, tx:Term): Term == [e+tx.k, r*tx.c]
       times(tco: R, tex: E, rx: %): % == 
        if entireRing? then 
		map(termTimes(tco, tex, #1), rx::Rep)
        else
		[[tex + tx.k, r] for tx in rx::Rep | not zero? (r := tco * tx.c)]



       -- local addm!
       addm!: (Rep, R, E, Rep) -> Rep
	-- p1 + coef*x^E * p2
	-- `spare' (commented out) is for storage efficiency (not so good for
	-- performance though.
       addm!(p1:Rep, coef:R, exp: E, p2:Rep): Rep == 
                --local res, newend, last: Rep
                res, newcell, endcell: Rep
		spare: List Rep
                res     := empty()
		endcell := empty()
		--spare   := empty()
                while not empty? p1 and not empty? p2 repeat 
                        tx := first p1
                        ty := first p2
                        exy := exp + ty.k
			newcell := empty();
			if tx.k = exy then 
				newcoef := tx.c + coef * ty.c
				if not zero? newcoef then
					tx.c    := newcoef
					newcell := p1
				--else
				--	spare   := cons(p1, spare)
				p1 := rest p1
				p2 := rest p2
			else if tx.k > exy then 
				newcell := p1
                               	p1      := rest p1
                        else 
				newcoef := coef * ty.c
				if not entireRing? and zero? newcoef then
					newcell := empty()
				--else if empty? spare then
				--	ttt := [exy, newcoef]
				--	newcell := cons(ttt, empty())
				--else
				--	newcell := first spare
				--	spare   := rest spare
				--	ttt := first newcell
				--	ttt.k := exy
				--	ttt.c := newcoef
                                else
					ttt := [exy, newcoef]
					newcell := cons(ttt, empty())
				p2 := rest p2
			if not empty? newcell then
				if empty? res then
					res := newcell
					endcell := res
				else
					qsetrest!(endcell, newcell)
					endcell := newcell
                if not empty? p1 then  -- then end is const * p1
			newcell := p1
                else  -- then end is (coef, exp) * p2
                        newcell := times(coef, exp, p2)
                empty? res => newcell
                qsetrest!(endcell, newcell)
                res
       pomopo! (p1, r, e, p2) ==  addm!(p1, r, e, p2)
       p1 * p2 == 
                xx := p1::Rep
                empty? xx => p1
                yy := p2::Rep
                empty? yy => p2
                zero? first(xx).k => first(xx).c * p2
                zero? first(yy).k => p1 * first(yy).c
                --if #xx > #yy then 
		--	(xx, yy) := (yy, xx)
		--	(p1, p2) := (p2, p1)
                xx := reverse xx
                res : Rep := empty()
                for tx in xx repeat res:=addm!(res,tx.c,tx.k,yy)
                res

--     if R has EntireRing then
--         p1 * p2  ==
--            null p1 => 0
--            null p2 => 0
--            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
--            +/[[[t1.k+t2.k,t1.c*t2.c]$Term for t2 in p2]
--                   for t1 in reverse(p1)]
--                   -- This 'reverse' is an efficiency improvement:
--                   -- reduces both time and space [Abbott/Bradford/Davenport]
--        else
--         p1 * p2  ==
--            null p1 => 0
--            null p2 => 0
--            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
--            +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ~= 0]
--                 for t1 in reverse(p1)]
--                  -- This 'reverse' is an efficiency improvement:
--                  -- reduces both time and space [Abbott/Bradford/Davenport]
       if R has CommutativeRing  then
         p ** np == p ** (np pretend NonNegativeInteger)

         p ** nn  ==
            null p => 0
            zero? nn => 1
            one? nn => p
            empty? p.rest =>
              zero?(cc:=p.first.c ** nn) => 0
              [[nn * p.first.k, cc]]
            binomThmExpt([p.first], p.rest, nn)

       if R has Field then
         unitNormal(p) ==
            null p or (lcf:R:=p.first.c) = 1 => [1,p,1]
            a := inv lcf
            [lcf::%, [[p.first.k,1],:(a * p.rest)], a::%]
         unitCanonical(p) ==
            null p or (lcf:R:=p.first.c) = 1 => p
            a := inv lcf
            [[p.first.k,1],:(a * p.rest)]
       else if R has IntegralDomain then
         unitNormal(p) ==
            null p or p.first.c = 1 => [1,p,1]
            (u,cf,a):=unitNormal(p.first.c)
            [u::%, [[p.first.k,cf],:(a * p.rest)], a::%]
         unitCanonical(p) ==
            null p or p.first.c = 1 => p
            (u,cf,a):=unitNormal(p.first.c)
            [[p.first.k,cf],:(a * p.rest)]
       if R has IntegralDomain then
         associates?(p1,p2) ==
            null p1 => null p2
            null p2 => false
            p1.first.k = p2.first.k and
              associates?(p1.first.c,p2.first.c) and
               ((p2.first.c exquo p1.first.c)::R * p1.rest = p2.rest)
         p exquo r  ==
           [(if (a:= tm.c exquo r) case "failed"
               then return "failed" else [tm.k,a])
                  for tm in p] :: Union(%,"failed")
         if E has CancellationAbelianMonoid then
           fmecg(p1:%,e:E,r:R,p2:%):% ==       -- p1 - r * X**e * p2
              rout:%:= []
              r:= - r
              for tm in p2 repeat
                 e2:= e + tm.k
                 c2:= r * tm.c
                 c2 = 0 => "next term"
                 while not null p1 and p1.first.k > e2 repeat
                   (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
                 null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
                 if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
                 p1:=p1.rest
              NRECONC(rout,p1)$Lisp
           if R has approximate then
             p1 exquo p2  ==
               null p2 => error "Division by 0"
               p2 = 1 => p1
               p1=p2 => 1
             --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
               rout:= []@List(Term)
               while not null p1 repeat
                  (a:= p1.first.c exquo p2.first.c)
                  a case "failed" => return "failed"
                  ee:= subtractIfCan(p1.first.k, p2.first.k)
                  ee case "failed" => return "failed"
                  p1:= fmecg(p1.rest, ee, a, p2.rest)
                  rout:= [[ee,a], :rout]
               null p1 => reverse(rout)::%    -- nreverse?
               "failed"
           else -- R not approximate
             p1 exquo p2  ==
               null p2 => error "Division by 0"
               p2 = 1 => p1
             --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
               rout:= []@List(Term)
               while not null p1 repeat
                  (a:= p1.first.c exquo p2.first.c)
                  a case "failed" => return "failed"
                  ee:= subtractIfCan(p1.first.k, p2.first.k)
                  ee case "failed" => return "failed"
                  p1:= fmecg(p1.rest, ee, a, p2.rest)
                  rout:= [[ee,a], :rout]
               null p1 => reverse(rout)::%    -- nreverse?
               "failed"
       if R has Field then
          x/r == inv(r)*x

@

\section{domain SUP SparseUnivariatePolynomial}

<<domain SUP SparseUnivariatePolynomial>>=
import NonNegativeInteger
import OutputForm
)abbrev domain SUP SparseUnivariatePolynomial
++ Author: Dave Barton, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, monomial, coefficient, reductum, differentiate,
++ elt, map, resultant, discriminant
++ Related Constructors: UnivariatePolynomial, Polynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents univariate polynomials over arbitrary
++ (not necessarily commutative) coefficient rings. The variable is
++ unspecified  so that the variable displays as \spad{?} on output.
++ If it is necessary to specify the variable name, use type \spadtype{UnivariatePolynomial}.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.
++ Note: if the coefficient ring is a field, this domain forms a euclidean domain.

SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
     outputForm : (%,OutputForm) -> OutputForm
        ++ outputForm(p,var) converts the SparseUnivariatePolynomial p to
        ++ an output form (see \spadtype{OutputForm}) printed as a polynomial in the
        ++ output form variable.
     fmecg: (%,NonNegativeInteger,R,%) -> %
        ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
    == PolynomialRing(R,NonNegativeInteger)
  add
   --representations
   Term := Record(k:NonNegativeInteger,c:R)
   Rep  := List Term
   p:%
   n:NonNegativeInteger
   np: PositiveInteger
   FP ==> SparseUnivariatePolynomial %
   pp,qq: FP
   lpp:List FP

   -- for karatsuba 
   kBound: NonNegativeInteger := 63
   upmp := UnivariatePolynomialMultiplicationPackage(R,%)


   if R has FieldOfPrimeCharacteristic  then 
         p ** np == p ** (np pretend NonNegativeInteger)
         p ** n  ==
            null p => 0
            zero? n => 1
            one? n => p
            empty? p.rest =>
              zero?(cc:=p.first.c ** n) => 0
              [[n * p.first.k, cc]]
            -- not worth doing special trick if characteristic is too small 
            if characteristic$R < 3 then return expt(p,n pretend PositiveInteger)$RepeatedSquaring(%)
            y:%:=1
            -- break up exponent in qn * characteristic + rn
            -- exponentiating by the characteristic is fast
            rec := divide(n, characteristic$R)
	    qn:= rec.quotient
            rn:= rec.remainder
            repeat 
                if rn = 1 then y := y * p 
                if rn > 1 then y:= y * binomThmExpt([p.first], p.rest, rn)
                zero? qn => return y
                -- raise to the characteristic power
                p:= [[t.k * characteristic$R , primeFrobenius(t.c)$R ]$Term for t in p]
		rec := divide(qn, characteristic$R)
		qn:= rec.quotient 
                rn:= rec.remainder
            y 



   zero?(p): Boolean == empty?(p)
   one?(p):Boolean == not empty? p and (empty? rest p and zero? first(p).k and one? first(p).c)
   ground?(p): Boolean == empty? p or (empty? rest p and zero? first(p).k)
   multiplyExponents(p,n) == [ [u.k*n,u.c] for u in p]
   divideExponents(p,n) ==
     null p => p
     m:= (p.first.k :: Integer exquo n::Integer)
     m case "failed" => "failed"
     u:= divideExponents(p.rest,n)
     u case "failed" => "failed"
     [[m::Integer::NonNegativeInteger,p.first.c],:u]
   karatsubaDivide(p, n)  ==
     zero? n => [p, 0]
     lowp: Rep := p
     highp: Rep := []
     repeat
       if empty? lowp then break
       t := first lowp
       if t.k < n then break
       lowp := rest lowp
       highp := cons([subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term,highp)
     [ reverse highp,  lowp]
   shiftRight(p, n)  ==
      [[subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term for t in p]
   shiftLeft(p, n)  ==
      [[t.k + n,t.c]$Term for t in p]
   pomopo!(p1,r,e,p2) ==
          rout:%:= []
          for tm in p2 repeat
             e2:= e + tm.k
             c2:= r * tm.c
             c2 = 0 => "next term"
             while not null p1 and p1.first.k > e2 repeat
               (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
             null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
             if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
             p1:=p1.rest
          NRECONC(rout,p1)$Lisp

-- implementation using karatsuba algorithm conditionally
--
--   p1 * p2 ==
--     xx := p1::Rep
--     empty? xx => p1
--     yy := p2::Rep
--     empty? yy => p2
--     zero? first(xx).k => first(xx).c * p2
--     zero? first(yy).k => p1 * first(yy).c
--     (first(xx).k > kBound) and (first(yy).k > kBound) and (#xx > kBound) and (#yy > kBound) =>
--       karatsubaOnce(p1,p2)$upmp
--     xx := reverse xx
--     res : Rep := empty()
--     for tx in xx repeat res:= rep pomopo!( res,tx.c,tx.k,p2)
--     res


   univariate(p:%) == p pretend SparseUnivariatePolynomial(R)
   multivariate(sup:SparseUnivariatePolynomial(R),v:SingletonAsOrderedSet) ==
      sup pretend %
   univariate(p:%,v:SingletonAsOrderedSet) ==
     zero? p => 0
     monomial(leadingCoefficient(p)::%,degree p) +
         univariate(reductum p,v)
   multivariate(supp:SparseUnivariatePolynomial(%),v:SingletonAsOrderedSet) ==
     zero? supp => 0
     lc:=leadingCoefficient supp
     degree lc > 0 => error "bad form polynomial"
     monomial(leadingCoefficient lc,degree supp) +
         multivariate(reductum supp,v)
   if R has FiniteFieldCategory and R has PolynomialFactorizationExplicit then
     RXY ==> SparseUnivariatePolynomial SparseUnivariatePolynomial R
     squareFreePolynomial pp ==
        squareFree(pp)$UnivariatePolynomialSquareFree(%,FP)
     factorPolynomial pp ==
          (generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
                      pretend Factored SparseUnivariatePolynomial %
     factorSquareFreePolynomial pp ==
          (generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
                      pretend Factored SparseUnivariatePolynomial %
     gcdPolynomial(pp,qq) == gcd(pp,qq)$FP
     factor p == factor(p)$DistinctDegreeFactorize(R,%)
     solveLinearPolynomialEquation(lpp,pp) ==
       solveLinearPolynomialEquation(lpp, pp)$FiniteFieldSolveLinearPolynomialEquation(R,%,FP)
   else if R has PolynomialFactorizationExplicit then
     import PolynomialFactorizationByRecursionUnivariate(R,%)
     solveLinearPolynomialEquation(lpp,pp)==
       solveLinearPolynomialEquationByRecursion(lpp,pp)
     factorPolynomial(pp) ==
       factorByRecursion(pp)
     factorSquareFreePolynomial(pp) ==
       factorSquareFreeByRecursion(pp)

   if R has IntegralDomain then
    if R has approximate then
     p1:% exquo p2:%  ==
        null p2 => error "Division by 0"
        p2 = 1 => p1
        p1=p2 => 1
      --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
        rout:= []@List(Term)
        while not null p1 repeat
           (a:= p1.first.c exquo p2.first.c)
           a case "failed" => return "failed"
           ee:= subtractIfCan(p1.first.k, p2.first.k)
           ee case "failed" => return "failed"
           p1:= fmecg(p1.rest, ee, a, p2.rest)
           rout:= [[ee,a], :rout]
        null p1 => reverse(rout)::%    -- nreverse?
        "failed"
    else -- R not approximate
     p1:% exquo p2:%  ==
        null p2 => error "Division by 0"
        p2 = 1 => p1
      --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
        rout:= []@List(Term)
        while not null p1 repeat
           (a:= p1.first.c exquo p2.first.c)
           a case "failed" => return "failed"
           ee:= subtractIfCan(p1.first.k, p2.first.k)
           ee case "failed" => return "failed"
           p1:= fmecg(p1.rest, ee, a, p2.rest)
           rout:= [[ee,a], :rout]
        null p1 => reverse(rout)::%    -- nreverse?
        "failed"
   fmecg(p1,e,r,p2) ==       -- p1 - r * X**e * p2
          rout:%:= []
          r:= - r
          for tm in p2 repeat
             e2:= e + tm.k
             c2:= r * tm.c
             c2 = 0 => "next term"
             while not null p1 and p1.first.k > e2 repeat
               (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
             null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
             if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
             p1:=p1.rest
          NRECONC(rout,p1)$Lisp
   pseudoRemainder(p1,p2) ==
     null p2 => error "PseudoDivision by Zero"
     null p1 => 0
     co:=p2.first.c;
     e:=p2.first.k;
     p2:=p2.rest;
     e1:=max(p1.first.k:Integer-e+1,0):NonNegativeInteger
     while not null p1 repeat
       if (u:=subtractIfCan(p1.first.k,e)) case "failed" then leave
       p1:=fmecg(co * p1.rest, u, p1.first.c, p2)
       e1:= (e1 - 1):NonNegativeInteger
     e1 = 0 => p1
     co ** e1 * p1
   toutput(t1:Term,v:OutputForm):OutputForm ==
     t1.k = 0 => t1.c :: OutputForm
     if t1.k = 1
       then mon:= v
       else mon := v ** t1.k::OutputForm
     t1.c = 1 => mon
     t1.c = -1 and
          ((t1.c :: OutputForm) = (-1$Integer)::OutputForm)@Boolean => - mon
     t1.c::OutputForm * mon
   outputForm(p:%,v:OutputForm) ==
     l: List(OutputForm)
     l:=[toutput(t,v) for t in p]
     null l => (0$Integer)::OutputForm -- else FreeModule 0 problems
     reduce("+",l)

   coerce(p:%):OutputForm == outputForm(p, "?"::OutputForm)
   elt(p:%,val:R) ==
      null p => 0$R
      co:=p.first.c
      n:=p.first.k
      for tm in p.rest repeat
       co:= co * val ** (n - (n:=tm.k)):NonNegativeInteger + tm.c
      n = 0 => co
      co * val ** n
   elt(p:%,val:%) ==
      null p => 0$%
      coef:% := p.first.c :: %
      n:=p.first.k
      for tm in p.rest repeat
       coef:= coef * val ** (n-(n:=tm.k)):NonNegativeInteger+(tm.c::%)
      n = 0 => coef
      coef * val ** n

   monicDivide(p1:%,p2:%) ==
      null p2 => error "monicDivide: division by 0"
      leadingCoefficient p2 ~= 1 => error "Divisor Not Monic"
      p2 = 1 => [p1,0]
      null p1 => [0,0]
      degree p1 < (n:=degree p2) => [0,p1]
      rout:Rep := []
      p2 := p2.rest
      while not null p1 repeat
         (u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
         rout:=[[u, p1.first.c], :rout]
         p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
      [reverse!(rout),p1]

   if R has IntegralDomain then
       discriminant(p) == discriminant(p)$PseudoRemainderSequence(R,%)
--     discriminant(p) ==
--       null p or zero?(p.first.k) => error "cannot take discriminant of constants"
--       dp:=differentiate p
--       corr:=  p.first.c ** ((degree p - 1 - degree dp)::NonNegativeInteger)
--       (-1)**((p.first.k*(p.first.k-1)) quo 2):NonNegativeInteger
--         * (corr * resultant(p,dp) exquo p.first.c)::R

       subResultantGcd(p1,p2) == subResultantGcd(p1,p2)$PseudoRemainderSequence(R,%)
--     subResultantGcd(p1,p2) ==    --args # 0, non-coef, prim, ans not prim
--       --see algorithm 1 (p. 4) of Brown's latest (unpublished) paper
--       if p1.first.k < p2.first.k then (p1,p2):=(p2,p1)
--       p:=pseudoRemainder(p1,p2)
--       co:=1$R;
--       e:= (p1.first.k - p2.first.k):NonNegativeInteger
--       while not null p and p.first.k ~= 0 repeat
--         p1:=p2; p2:=p; p:=pseudoRemainder(p1,p2)
--         null p or p.first.k = 0 => "enuf"
--         co:=(p1.first.c ** e exquo co ** max(0, (e-1))::NonNegativeInteger)::R
--         e:= (p1.first.k - p2.first.k):NonNegativeInteger;  c1:=co**e
--         p:=[[tm.k,((tm.c exquo p1.first.c)::R exquo c1)::R] for tm in p]
--       if null p then p2 else 1$%

       resultant(p1,p2) == resultant(p1,p2)$PseudoRemainderSequence(R,%)
--     resultant(p1,p2) ==      --SubResultant PRS Algorithm
--        null p1 or null p2 => 0$R
--        0 = degree(p1) => ((first p1).c)**degree(p2)
--        0 = degree(p2) => ((first p2).c)**degree(p1)
--        if p1.first.k < p2.first.k then
--          (if odd?(p1.first.k) then p1:=-p1;  (p1,p2):=(p2,p1))
--        p:=pseudoRemainder(p1,p2)
--        co:=1$R;  e:=(p1.first.k-p2.first.k):NonNegativeInteger
--        while not null p repeat
--           if not odd?(e) then p:=-p
--           p1:=p2;  p2:=p;  p:=pseudoRemainder(p1,p2)
--           co:=(p1.first.c ** e exquo co ** max(e:Integer-1,0):NonNegativeInteger)::R
--           e:= (p1.first.k - p2.first.k):NonNegativeInteger;  c1:=co**e
--           p:=(p exquo ((leadingCoefficient p1) * c1))::%
--        degree p2 > 0 => 0$R
--        (p2.first.c**e exquo co**((e-1)::NonNegativeInteger))::R
   if R has GcdDomain then
     content(p) == if null p then 0$R else "gcd"/[tm.c for tm in p]
        --make CONTENT more efficient?

     primitivePart(p) ==
        null p => p
        ct :=content(p)
        unitCanonical((p exquo ct)::%)
               -- exquo  present since % is now an IntegralDomain

     gcd(p1,p2) ==
          gcdPolynomial(p1 pretend SparseUnivariatePolynomial R,
                        p2 pretend SparseUnivariatePolynomial R) pretend %

   if R has Field then
     divide( p1, p2)  ==
       zero? p2 => error "Division by 0"
       one? p2 => [p1,0]
       ct:=inv(p2.first.c)
       n:=p2.first.k
       p2:=p2.rest
       rout:=empty()$List(Term)
       while p1 ~= 0 repeat
          (u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
          rout:=[[u, ct * p1.first.c], :rout]
          p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
       [reverse!(rout),p1]

     p / co == inv(co) * p

@
\section{package SUP2 SparseUnivariatePolynomialFunctions2}
<<package SUP2 SparseUnivariatePolynomialFunctions2>>=
)abbrev package SUP2 SparseUnivariatePolynomialFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package lifts a mapping from coefficient rings R to S to
++ a mapping from sparse univariate polynomial over R to
++ a sparse univariate polynomial over S.
++ Note that the mapping is assumed
++ to send zero to zero, since it will only be applied to the non-zero
++ coefficients of the polynomial.

SparseUnivariatePolynomialFunctions2(R:Ring, S:Ring): with
  map:(R->S,SparseUnivariatePolynomial R) -> SparseUnivariatePolynomial S
    ++ map(func, poly) creates a new polynomial by applying func to
    ++ every non-zero coefficient of the polynomial poly.
 == add
  map(f, p) == map(f, p)$UnivariatePolynomialCategoryFunctions2(R,
           SparseUnivariatePolynomial R, S, SparseUnivariatePolynomial S)

@
\section{domain UP UnivariatePolynomial}
<<domain UP UnivariatePolynomial>>=
)abbrev domain UP UnivariatePolynomial
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, monomial, coefficient, reductum, differentiate,
++ elt, map, resultant, discriminant
++ Related Constructors: SparseUnivariatePolynomial, MultivariatePolynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents univariate polynomials in some symbol
++ over arbitrary (not necessarily commutative) coefficient rings.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.
++ Note: if the coefficient ring is a field, then this domain forms a euclidean domain.

UnivariatePolynomial(x:Symbol, R:Ring):
  Join(UnivariatePolynomialCategory(R),CoercibleFrom Variable x) with
    fmecg: (%,NonNegativeInteger,R,%) -> %
        ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
   == SparseUnivariatePolynomial(R)   add
    Rep:=SparseUnivariatePolynomial(R)
    coerce(p:%):OutputForm  == outputForm(p, outputForm x)
    coerce(v:Variable(x)):% == monomial(1, 1)

@
\section{package UP2 UnivariatePolynomialFunctions2}
<<package UP2 UnivariatePolynomialFunctions2>>=
)abbrev package UP2 UnivariatePolynomialFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package lifts a mapping from coefficient rings R to S to
++ a mapping from \spadtype{UnivariatePolynomial}(x,R) to
++ \spadtype{UnivariatePolynomial}(y,S). Note that the mapping is assumed
++ to send zero to zero, since it will only be applied to the non-zero
++ coefficients of the polynomial.

UnivariatePolynomialFunctions2(x:Symbol, R:Ring, y:Symbol, S:Ring): with
  map: (R -> S, UnivariatePolynomial(x,R)) -> UnivariatePolynomial(y,S)
    ++ map(func, poly) creates a new polynomial by applying func to
    ++ every non-zero coefficient of the polynomial poly.
 == add
  map(f, p) == map(f, p)$UnivariatePolynomialCategoryFunctions2(R,
              UnivariatePolynomial(x, R), S, UnivariatePolynomial(y, S))

@
\section{package POLY2UP PolynomialToUnivariatePolynomial}
<<package POLY2UP PolynomialToUnivariatePolynomial>>=
)abbrev package POLY2UP PolynomialToUnivariatePolynomial
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package is primarily to help the interpreter do coercions.
++ It allows you to view a polynomial as a
++ univariate polynomial in one of its variables with
++ coefficients which are again a polynomial in all the
++ other variables.

PolynomialToUnivariatePolynomial(x:Symbol, R:Ring): with
  univariate: (Polynomial R, Variable x) ->
                                   UnivariatePolynomial(x, Polynomial R)
     ++ univariate(p, x) converts the polynomial p to a one of type
     ++ \spad{UnivariatePolynomial(x,Polynomial(R))}, ie. as a member of \spad{R[...][x]}.
 == add
  univariate(p, y) ==
    q:SparseUnivariatePolynomial(Polynomial R) := univariate(p, x)
    map(#1, q)$UnivariatePolynomialCategoryFunctions2(Polynomial R,
                  SparseUnivariatePolynomial Polynomial R, Polynomial R,
                      UnivariatePolynomial(x, Polynomial R))

@
\section{package UPSQFREE UnivariatePolynomialSquareFree}
<<package UPSQFREE UnivariatePolynomialSquareFree>>=
)abbrev package UPSQFREE UnivariatePolynomialSquareFree
++ Author: Dave Barton, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: squareFree, squareFreePart
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides for square-free decomposition of
++ univariate polynomials over arbitrary rings, i.e.
++ a partial factorization such that each factor is a product
++ of irreducibles with multiplicity one and the factors are
++ pairwise relatively prime. If the ring
++ has characteristic zero, the result is guaranteed to satisfy
++ this condition. If the ring is an infinite ring of
++ finite characteristic, then it may not be possible to decide when
++ polynomials contain factors which are pth powers. In this
++ case, the flag associated with that polynomial is set to "nil"
++ (meaning that that polynomials are not guaranteed to be square-free).

UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
  where
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)
    P:Join(UnivariatePolynomialCategory(RC),IntegralDomain) with
      gcd: (%,%) -> %
        ++ gcd(p,q) computes the greatest-common-divisor of p and q.

    C == with
      squareFree: P -> Factored(P)
        ++ squareFree(p) computes the square-free factorization of the
        ++ univariate polynomial p. Each factor has no repeated roots, and the
        ++ factors are pairwise relatively prime.
      squareFreePart: P -> P
        ++ squareFreePart(p) returns a polynomial which has the same
        ++ irreducible factors as the univariate polynomial p, but each
        ++ factor has multiplicity one.
      BumInSepFFE: FF -> FF
        ++ BumInSepFFE(f) is a local function, exported only because
        ++ it has multiple conditional definitions.

    T == add

      if RC has CharacteristicZero then
        squareFreePart(p:P) == (p exquo gcd(p, differentiate p))::P
      else
        squareFreePart(p:P) ==
          unit(s := squareFree(p)$%) * */[f.factor for f in factors s]

      if RC has FiniteFieldCategory then
        BumInSepFFE(ffe:FF) ==
           ["sqfr", map(charthRoot,ffe.fctr), characteristic$P*ffe.xpnt]
      else if RC has CharacteristicNonZero then
         BumInSepFFE(ffe:FF) ==
            np := multiplyExponents(ffe.fctr,characteristic$P:NonNegativeInteger)
            (nthrp := charthRoot(np)) case "failed" =>
               ["nil", np, ffe.xpnt]
            ["sqfr", nthrp, characteristic$P*ffe.xpnt]

      else
        BumInSepFFE(ffe:FF) ==
          ["nil",
           multiplyExponents(ffe.fctr,characteristic$P:NonNegativeInteger),
            ffe.xpnt]


      if RC has CharacteristicZero then
        squareFree(p:P) ==             --Yun's algorithm - see SYMSAC '76, p.27
           --Note ci primitive is, so GCD's don't need to %do contents.
           --Change gcd to return cofctrs also?
           ci:=p; di:=differentiate(p); pi:=gcd(ci,di)
           degree(pi)=0 =>
             (u,c,a):=unitNormal(p)
             makeFR(u,[["sqfr",c,1]])
           i:NonNegativeInteger:=0; lffe:List FF:=[]
           lcp := leadingCoefficient p
           while degree(ci)~=0 repeat
              ci:=(ci exquo pi)::P
              di:=(di exquo pi)::P - differentiate(ci)
              pi:=gcd(ci,di)
              i:=i+1
              degree(pi) > 0 =>
                 lcp:=(lcp exquo (leadingCoefficient(pi)**i))::RC
                 lffe:=[["sqfr",pi,i],:lffe]
           makeFR(lcp::P,lffe)

      else
        squareFree(p:P) ==           --Musser's algorithm - see SYMSAC '76, p.27
             --p MUST BE PRIMITIVE, Any characteristic.
             --Note ci primitive, so GCD's don't need to %do contents.
             --Change gcd to return cofctrs also?
           ci := gcd(p,differentiate(p))
           degree(ci)=0 =>
             (u,c,a):=unitNormal(p)
             makeFR(u,[["sqfr",c,1]])
           di := (p exquo ci)::P
           i:NonNegativeInteger:=0; lffe:List FF:=[]
           dunit : P := 1
           while degree(di)~=0 repeat
              diprev := di
              di := gcd(ci,di)
              ci:=(ci exquo di)::P
              i:=i+1
              degree(diprev) = degree(di) =>
                 lc := (leadingCoefficient(diprev) exquo leadingCoefficient(di))::RC
                 dunit := lc**i * dunit
              pi:=(diprev exquo di)::P
              lffe:=[["sqfr",pi,i],:lffe]
           dunit := dunit * di ** (i+1)
           degree(ci)=0 => makeFR(dunit*ci,lffe)
           redSqfr:=squareFree(divideExponents(ci,characteristic$P)::P)
           lsnil:= [BumInSepFFE(ffe) for ffe in factorList redSqfr]
           lffe:=append(lsnil,lffe)
           makeFR(dunit*(unit redSqfr),lffe)

@
\section{package PSQFR PolynomialSquareFree}
<<package PSQFR PolynomialSquareFree>>=
)abbrev package PSQFR PolynomialSquareFree
++ Author:
++ Date Created:
++ Date Last Updated: November 1993, (P.Gianni)
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package computes square-free decomposition of multivariate
++ polynomials over a coefficient ring which is an arbitrary gcd domain.
++ The requirement on the coefficient domain guarantees that the \spadfun{content} can be
++ removed so that factors will be primitive as well as square-free.
++ Over an infinite ring of finite characteristic,it may not be possible to
++ guarantee that the factors are square-free.

PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
  E:OrderedAbelianMonoidSup
  P:PolynomialCategory(RC,E,VarSet)

  C == with
    squareFree : P -> Factored P
      ++ squareFree(p) returns the square-free factorization of the
      ++ polynomial p.  Each factor has no repeated roots, and the
      ++ factors are pairwise relatively prime.

  T == add
    SUP    ==> SparseUnivariatePolynomial(P)
    NNI    ==> NonNegativeInteger
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)

    finSqFr : (P,List VarSet) -> Factored P
    pthPower : P -> Factored P
    pPolRoot : P -> P
    putPth   : P -> P

    chrc:=characteristic$RC

    if RC has CharacteristicNonZero then
    -- find the p-th root of a polynomial
      pPolRoot(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=divideExponents(uf,chrc)::SUP
        uf:=map(pPolRoot,uf)
        multivariate(uf,mv)

    -- substitute variables with their p-th power
      putPth(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=multiplyExponents(uf,chrc)::SUP
        uf:=map(putPth,uf)
        multivariate(uf,mv)

    -- the polynomial is a perfect power
      pthPower(f:P) : Factored P ==
        proot : P := 0
        isSq  : Boolean := false
        if (g:=charthRoot f) case "failed" then proot:=pPolRoot(f)
        else
          proot := g :: P
          isSq  := true
        psqfr:=finSqFr(proot,variables f)
        isSq  =>
          makeFR((unit psqfr)**chrc,[[u.flg,u.fctr,
           (u.xpnt)*chrc] for u in factorList psqfr])
        makeFR((unit psqfr),[["nil",putPth u.fctr,u.xpnt]
                             for u in factorList psqfr])

    -- compute the square free decomposition, finite characteristic case
      finSqFr(f:P,lvar:List VarSet) : Factored P ==
         empty? lvar => pthPower(f)
         mv:=first lvar
         lvar:=lvar.rest
         differentiate(f,mv)=0 => finSqFr(f,lvar)
         uf:=univariate(f,mv)
         cont := content uf
         cont1:P:=1
         uf := (uf exquo cont)::SUP
         squf := squareFree(uf)$UnivariatePolynomialSquareFree(P,SUP)
         pfaclist:List FF :=[]
         for u in factorList squf repeat
           uexp:NNI:=(u.xpnt):NNI
           u.flg = "sqfr" =>  -- the square free factor is OK
             pfaclist:= cons([u.flg,multivariate(u.fctr,mv),uexp],
                              pfaclist)
           --listfin1:= finSqFr(multivariate(u.fctr,mv),lvar)
           listfin1:= squareFree multivariate(u.fctr,mv)
           flistfin1:=[[uu.flg,uu.fctr,uu.xpnt*uexp]
                        for uu in factorList listfin1]
           cont1:=cont1*((unit listfin1)**uexp)
           pfaclist:=append(flistfin1,pfaclist)
         cont:=cont*cont1
         cont ~= 1 =>
           sqp := squareFree cont
           pfaclist:= append (factorList sqp,pfaclist)
           makeFR(unit(sqp)*coefficient(unit squf,0),pfaclist)
         makeFR(coefficient(unit squf,0),pfaclist)

    squareFree(p:P) ==
       mv:=mainVariable p
       mv case "failed" => makeFR(p,[])$Factored(P)
       characteristic$RC ~=0 => finSqFr(p,variables p)
       up:=univariate(p,mv)
       cont := content up
       up := (up exquo cont)::SUP
       squp := squareFree(up)$UnivariatePolynomialSquareFree(P,SUP)
       pfaclist:List FF :=
         [[u.flg,multivariate(u.fctr,mv),u.xpnt]
                                            for u in factorList squp]
       cont ~= 1 =>
         sqp := squareFree cont
         makeFR(unit(sqp)*coefficient(unit squp,0),
              append(factorList sqp, pfaclist))
       makeFR(coefficient(unit squp,0),pfaclist)

@
\section{package UPMP UnivariatePolynomialMultiplicationPackage}
<<package UPMP UnivariatePolynomialMultiplicationPackage>>=
)abbrev package UPMP UnivariatePolynomialMultiplicationPackage
++ Author: Marc Moreno Maza
++ Date Created: 14.08.2000
++ Description:
++ This package implements Karatsuba's trick for multiplying
++ (large) univariate polynomials. It could be improved with
++ a version doing the work on place and also with a special
++ case for squares. We've done this in Basicmath, but we
++ believe that this out of the scope of AXIOM.

UnivariatePolynomialMultiplicationPackage(R: Ring, U: UnivariatePolynomialCategory(R)): C == T
  where
    HL ==> Record(quotient:U,remainder:U)
    C == with
      noKaratsuba: (U, U) -> U
        ++ \spad{noKaratsuba(a,b)} returns \spad{a*b} without
        ++ using Karatsuba's trick at all.
      karatsubaOnce: (U, U) -> U
        ++ \spad{karatsuba(a,b)} returns \spad{a*b} by applying
        ++ Karatsuba's trick once. The other multiplications
        ++ are performed by calling \spad{*} from \spad{U}.
      karatsuba: (U, U, NonNegativeInteger, NonNegativeInteger) -> U;
        ++ \spad{karatsuba(a,b,l,k)} returns \spad{a*b} by applying
        ++ Karatsuba's trick provided that both \spad{a} and \spad{b}
        ++ have at least \spad{l} terms and \spad{k > 0} holds
        ++ and by calling \spad{noKaratsuba} otherwise. The other
        ++ multiplications are performed by recursive calls with
        ++ the same third argument and \spad{k-1} as fourth argument.

    T == add
      noKaratsuba(a,b) ==
        zero? a => a
        zero? b => b
        zero?(degree(a)) => leadingCoefficient(a) * b
        zero?(degree(b)) => a * leadingCoefficient(b)
        lu: List(U) := reverse monomials(a)
        res: U := 0;
        for u in lu repeat
          res := pomopo!(res, leadingCoefficient(u), degree(u), b)
        res
      karatsubaOnce(a:U,b:U): U ==
        da := minimumDegree(a)
        db := minimumDegree(b)
        if not zero? da then a := shiftRight(a,da)
        if not zero? db then b := shiftRight(b,db)
        d := da + db
        n: NonNegativeInteger := min(degree(a),degree(b)) quo 2
        rec: HL := karatsubaDivide(a, n)
        ha := rec.quotient
        la := rec.remainder
        rec := karatsubaDivide(b, n)
        hb := rec.quotient
        lb := rec.remainder
        w: U := (ha - la) * (lb - hb)
        u: U := la * lb
        v: U := ha * hb
        w := w + (u + v)
        w := shiftLeft(w,n) + u
        zero? d => shiftLeft(v,2*n) + w
        shiftLeft(v,2*n + d) + shiftLeft(w,d)
      karatsuba(a:U,b:U,l:NonNegativeInteger,k:NonNegativeInteger): U ==
        zero? k => noKaratsuba(a,b)
        degree(a) < l => noKaratsuba(a,b)
        degree(b) < l => noKaratsuba(a,b)
        numberOfMonomials(a) < l => noKaratsuba(a,b)
        numberOfMonomials(b) < l => noKaratsuba(a,b)
        da := minimumDegree(a)
        db := minimumDegree(b)
        if not zero? da then a := shiftRight(a,da)
        if not zero? db then b := shiftRight(b,db)
        d := da + db
        n: NonNegativeInteger := min(degree(a),degree(b)) quo 2
        k := subtractIfCan(k,1)::NonNegativeInteger
        rec: HL := karatsubaDivide(a, n)
        ha := rec.quotient
        la := rec.remainder
        rec := karatsubaDivide(b, n)
        hb := rec.quotient
        lb := rec.remainder
        w: U := karatsuba(ha - la, lb - hb, l, k)
        u: U := karatsuba(la, lb, l, k)
        v: U := karatsuba(ha, hb, l, k)
        w := w + (u + v)
        w := shiftLeft(w,n) + u
        zero? d => shiftLeft(v,2*n) + w
        shiftLeft(v,2*n + d) + shiftLeft(w,d)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FM FreeModule>>
<<domain PR PolynomialRing>>
<<package UPSQFREE UnivariatePolynomialSquareFree>>
<<package PSQFR PolynomialSquareFree>>
<<package UPMP UnivariatePolynomialMultiplicationPackage>>
<<domain SUP SparseUnivariatePolynomial>>
<<package SUP2 SparseUnivariatePolynomialFunctions2>>
<<domain UP UnivariatePolynomial>>
<<package UP2 UnivariatePolynomialFunctions2>>
<<package POLY2UP PolynomialToUnivariatePolynomial>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}