\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra plot3d.spad} \author{Clifton J. Williamson, Michael Monagan, Jon Steinbach} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain PLOT3D Plot3D} <<domain PLOT3D Plot3D>>= )abbrev domain PLOT3D Plot3D ++ Author: Clifton J. Williamson based on code by Michael Monagan ++ Date Created: Jan 1989 ++ Date Last Updated: 22 November 1990 (Jon Steinbach) ++ Basic Operations: pointPlot, plot, zoom, refine, tRange, tValues, ++ minPoints3D, setMinPoints3D, maxPoints3D, setMaxPoints3D, ++ screenResolution3D, setScreenResolution3D, adaptive3D?, setAdaptive3D, ++ numFunEvals3D, debug3D ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: plot, parametric ++ References: ++ Description: Plot3D supports parametric plots defined over a real ++ number system. A real number system is a model for the real ++ numbers and as such may be an approximation. For example, ++ floating point numbers and infinite continued fractions are ++ real number systems. The facilities at this point are limited ++ to 3-dimensional parametric plots. Plot3D(): Exports == Implementation where B ==> Boolean F ==> DoubleFloat I ==> Integer L ==> List N ==> NonNegativeInteger OUT ==> OutputForm P ==> Point F S ==> String R ==> Segment F O ==> OutputPackage C ==> Record(source: F -> P,ranges: L R, knots: L F, points: L P) Exports ==> PlottableSpaceCurveCategory with pointPlot: (F -> P,R) -> % ++ pointPlot(f,g,h,a..b) plots {/emx = f(t), y = g(t), z = h(t)} as ++ t ranges over {/em[a,b]}. pointPlot: (F -> P,R,R,R,R) -> % ++ pointPlot(f,x,y,z,w) \undocumented plot: (F -> F,F -> F,F -> F,F -> F,R) -> % ++ plot(f,g,h,a..b) plots {/emx = f(t), y = g(t), z = h(t)} as ++ t ranges over {/em[a,b]}. plot: (F -> F,F -> F,F -> F,F -> F,R,R,R,R) -> % ++ plot(f1,f2,f3,f4,x,y,z,w) \undocumented plot: (%,R) -> % -- change the range ++ plot(x,r) \undocumented zoom: (%,R,R,R) -> % ++ zoom(x,r,s,t) \undocumented refine: (%,R) -> % ++ refine(x,r) \undocumented refine: % -> % ++ refine(x) \undocumented tRange: % -> R ++ tRange(p) returns the range of the parameter in a parametric plot p. tValues: % -> L L F ++ tValues(p) returns a list of lists of the values of the parameter for ++ which a point is computed, one list for each curve in the plot p. minPoints3D: () -> I ++ minPoints3D() returns the minimum number of points in a plot. setMinPoints3D: I -> I ++ setMinPoints3D(i) sets the minimum number of points in a plot to i. maxPoints3D: () -> I ++ maxPoints3D() returns the maximum number of points in a plot. setMaxPoints3D: I -> I ++ setMaxPoints3D(i) sets the maximum number of points in a plot to i. screenResolution3D: () -> I ++ screenResolution3D() returns the screen resolution for a 3d graph. setScreenResolution3D: I -> I ++ setScreenResolution3D(i) sets the screen resolution for a 3d graph to i. adaptive3D?: () -> B ++ adaptive3D?() determines whether plotting be done adaptively. setAdaptive3D: B -> B ++ setAdaptive3D(true) turns adaptive plotting on; ++ setAdaptive3D(false) turns adaptive plotting off. numFunEvals3D: () -> I ++ numFunEvals3D() returns the number of points computed. debug3D: B -> B ++ debug3D(true) turns debug mode on; ++ debug3D(false) turns debug mode off. Implementation ==> add import PointPackage(F) --% local functions fourth : L R -> R checkRange : R -> R -- checks that left-hand endpoint is less than right-hand endpoint intersect : (R,R) -> R -- intersection of two intervals union : (R,R) -> R -- union of two intervals join : (L C,I) -> R parametricRange: % -> R -- setColor : (P,F) -> F select : (L P,P -> F,(F,F) -> F) -> F -- normalizeColor : (P,F,F) -> F rangeRefine : (C,R) -> C adaptivePlot : (C,R,R,R,R,I,I) -> C basicPlot : (F -> P,R) -> C basicRefine : (C,R) -> C point : (F,F,F,F) -> P --% representation Rep := Record( display: L R, _ bounds: L R, _ screenres: I, _ axisLabels: L S, _ functions: L C ) --% global constants ADAPTIVE : B := true MINPOINTS : I := 49 MAXPOINTS : I := 1000 NUMFUNEVALS : I := 0 SCREENRES : I := 500 ANGLEBOUND : F := cos inv (4::F) DEBUG : B := false point(xx,yy,zz,col) == point(l : L F := [xx,yy,zz,col]) fourth list == first rest rest rest list checkRange r == (lo r > hi r => error "ranges cannot be negative"; r) intersect(s,t) == checkRange (max(lo s,lo t) .. min(hi s,hi t)) union(s:R,t:R) == min(lo s,lo t) .. max(hi s,hi t) join(l,i) == rr := first l u : R := i = 0 => first(rr.ranges) i = 1 => second(rr.ranges) i = 2 => third(rr.ranges) fourth(rr.ranges) for r in rest l repeat i = 0 => u := union(u,first(r.ranges)) i = 1 => u := union(u,second(r.ranges)) i = 2 => u := union(u,third(r.ranges)) u := union(u,fourth(r.ranges)) u parametricRange r == first(r.bounds) minPoints3D() == MINPOINTS setMinPoints3D n == if n < 3 then error "three points minimum required" if MAXPOINTS < n then MAXPOINTS := n MINPOINTS := n maxPoints3D() == MAXPOINTS setMaxPoints3D n == if n < 3 then error "three points minimum required" if MINPOINTS > n then MINPOINTS := n MAXPOINTS := n screenResolution3D() == SCREENRES setScreenResolution3D n == if n < 2 then error "buy a new terminal" SCREENRES := n adaptive3D?() == ADAPTIVE setAdaptive3D b == ADAPTIVE := b numFunEvals3D() == NUMFUNEVALS debug3D b == DEBUG := b -- setColor(p,c) == p.colNum := c xRange plot == second plot.bounds yRange plot == third plot.bounds zRange plot == fourth plot.bounds tRange plot == first plot.bounds tValues plot == outList : L L F := nil() for curve in plot.functions repeat outList := concat(curve.knots,outList) outList select(l,f,g) == m := f first l if (%sptreq(m, quietDoubleNaN()$Lisp)$Foreign(Builtin)) then m := 0 -- for p in rest l repeat m := g(m,fp) for p in rest l repeat fp : F := f p if (%sptreq(fp, quietDoubleNaN()$Lisp)$Foreign(Builtin)) then fp := 0 m := g(m,fp) m -- normalizeColor(p,lo,diff) == -- p.colNum := (p.colNum - lo)/diff rangeRefine(curve,nRange) == checkRange nRange; l := lo nRange; h := hi nRange t := curve.knots; p := curve.points; f := curve.source while not null t and first t < l repeat (t := rest t; p := rest p) c : L F := nil(); q : L P := nil() while not null t and first t <= h repeat c := concat(first t,c); q := concat(first p,q) t := rest t; p := rest p if null c then return basicPlot(f,nRange) if first c < h then c := concat(h,c); q := concat(f h,q) NUMFUNEVALS := NUMFUNEVALS + 1 t := c := reverse! c; p := q := reverse! q s := (h-l)/(MINPOINTS::F-1) if (first t) ~= l then t := c := concat(l,c); p := q := concat(f l,p) NUMFUNEVALS := NUMFUNEVALS + 1 while not null rest t repeat n := wholePart((second(t) - first(t))/s) d := (second(t) - first(t))/((n+1)::F) for i in 1..n repeat t.rest := concat(first(t) + d,rest t); t1 := second t p.rest := concat(f t1,rest p) NUMFUNEVALS := NUMFUNEVALS + 1 t := rest t; p := rest p t := rest t p := rest p xRange := select(q,xCoord,min) .. select(q,xCoord,max) yRange := select(q,yCoord,min) .. select(q,yCoord,max) zRange := select(q,zCoord,min) .. select(q,zCoord,max) -- colorLo := select(q,color,min); colorHi := select(q,color,max) -- (diff := colorHi - colorLo) = 0 => -- error "all points are the same color" -- map(normalizeColor(#1,colorLo,diff),q)$ListPackage1(P) [f,[nRange,xRange,yRange,zRange],c,q] adaptivePlot(curve,tRg,xRg,yRg,zRg,pixelfraction,resolution) == xDiff := hi xRg - lo xRg yDiff := hi yRg - lo yRg zDiff := hi zRg - lo zRg -- xDiff = 0 or yDiff = 0 or zDiff = 0 => curve--!! delete this? if xDiff = 0::F then xDiff := 1::F if yDiff = 0::F then yDiff := 1::F if zDiff = 0::F then zDiff := 1::F l := lo tRg; h := hi tRg (tDiff := h-l) = 0 => curve t := curve.knots #t < 3 => curve p := curve.points; f := curve.source minLength:F := 4::F/resolution::F maxLength := 1/4::F tLimit := tDiff/(pixelfraction*resolution)::F while not null t and first t < l repeat (t := rest t; p := rest p) #t < 3 => curve headert := t; headerp := p st := t; sp := p todot : L L F := nil() todop : L L P := nil() while not null rest rest st repeat todot := concat!(todot, st) todop := concat!(todop, sp) st := rest st; sp := rest sp st := headert; sp := headerp todo1 := todot; todo2 := todop n : I := 0 while not null todo1 repeat st := first(todo1) t0 := first(st); t1 := second(st); t2 := third(st) if t2 > h then leave t2 - t0 < tLimit => todo1 := rest todo1 todo2 := rest todo2; if not null todo1 then (t := first(todo1); p := first(todo2)) sp := first(todo2) x0 := xCoord first(sp); y0 := yCoord first(sp); z0 := zCoord first(sp) x1 := xCoord second(sp); y1 := yCoord second(sp); z1 := zCoord second(sp) x2 := xCoord third(sp); y2 := yCoord third(sp); z2 := zCoord third(sp) a1 := (x1-x0)/xDiff; b1 := (y1-y0)/yDiff; c1 := (z1-z0)/zDiff a2 := (x2-x1)/xDiff; b2 := (y2-y1)/yDiff; c2 := (z2-z1)/zDiff s1 := sqrt(a1**2+b1**2+c1**2); s2 := sqrt(a2**2+b2**2+c2**2) dp := a1*a2+b1*b2+c1*c2 s1 < maxLength and s2 < maxLength and _ (s1 = 0 or s2 = 0 or s1 < minLength and s2 < minLength or _ dp/s1/s2 > ANGLEBOUND) => todo1 := rest todo1 todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) if n = MAXPOINTS then leave else n := n + 1 --if DEBUG then --r : L F := [minLength,maxLength,s1,s2,dp/s1/s2,ANGLEBOUND] --output(r::E)$O st := rest t if not null rest rest st then tm := (t0+t1)/2::F tj := tm t.rest := concat(tj,rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := rest todo1; todo2 := rest todo2 tm := (t1+t2)/2::F tj := tm t.rest := concat(tj, rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) todo1 := rest todo1; todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) else tm := (t0+t1)/2::F tj := tm t.rest := concat(tj,rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p tm := (t1+t2)/2::F tj := tm t.rest := concat(tj, rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) todo1 := rest todo1; todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) if positive? n then NUMFUNEVALS := NUMFUNEVALS + n t := curve.knots; p := curve.points xRg := select(p,xCoord,min) .. select(p,xCoord,max) yRg := select(p,yCoord,min) .. select(p,yCoord,max) zRg := select(p,zCoord,min) .. select(p,zCoord,max) [curve.source,[tRg,xRg,yRg,zRg],t,p] else curve basicPlot(f,tRange) == checkRange tRange; l := lo tRange; h := hi tRange t : L F := list l; p : L P := list f l s := (h-l)/(MINPOINTS-1)::F for i in 2..MINPOINTS-1 repeat l := l+s; t := concat(l,t) p := concat(f l,p) t := reverse! concat(h,t) p := reverse! concat(f h,p) xRange : R := select(p,xCoord,min) .. select(p,xCoord,max) yRange : R := select(p,yCoord,min) .. select(p,yCoord,max) zRange : R := select(p,zCoord,min) .. select(p,zCoord,max) [f,[tRange,xRange,yRange,zRange],t,p] zoom(p,xRange,yRange,zRange) == [[xRange,yRange,zRange],p.bounds, p.screenres,p.axisLabels,p.functions] basicRefine(curve,nRange) == tRange:R := first curve.ranges -- curve := copy$C curve -- Yet another @#$%^&* compiler bug curve: C := [curve.source,curve.ranges,curve.knots,curve.points] t := curve.knots := copy curve.knots p := curve.points := copy curve.points l := lo nRange; h := hi nRange f := curve.source while not null rest t and first(t) < h repeat second(t) < l => (t := rest t; p := rest p) -- insert new point between t.0 and t.1 tm:F := (first(t) + second(t))/2::F -- if DEBUG then output$O (tm::E) pm := f tm NUMFUNEVALS := NUMFUNEVALS + 1 t.rest := concat(tm,rest t); t := rest rest t p.rest := concat(pm,rest p); p := rest rest p t := curve.knots; p := curve.points xRange := select(p,xCoord,min) .. select(p,xCoord,max) yRange := select(p,yCoord,min) .. select(p,yCoord,max) zRange := select(p,zCoord,min) .. select(p,zCoord,max) [curve.source,[tRange,xRange,yRange,zRange],t,p] refine p == refine(p,parametricRange p) refine(p,nRange) == NUMFUNEVALS := 0 tRange := parametricRange p nRange := intersect(tRange,nRange) curves: L C := [basicRefine(c,nRange) for c in p.functions] xRange := join(curves,1); yRange := join(curves,2) zRange := join(curves,3) scrres := p.screenres if adaptive3D?() then tlimit := 8 curves := [adaptivePlot(c,nRange,xRange,yRange,zRange, _ tlimit,scrres := 2*scrres) for c in curves] xRange := join(curves,1); yRange := join(curves,2) zRange := join(curves,3) [p.display,[tRange,xRange,yRange,zRange], _ scrres,p.axisLabels,curves] plot(p:%,tRange:R) == -- re plot p on a new range making use of the points already -- computed if possible NUMFUNEVALS := 0 curves: L C := [rangeRefine(c,tRange) for c in p.functions] xRange := join(curves,1); yRange := join(curves,2) zRange := join(curves,3) if adaptive3D?() then tlimit := 8 curves := [adaptivePlot(c,tRange,xRange,yRange,zRange,tlimit, _ p.screenres) for c in curves] xRange := join(curves,1); yRange := join(curves,2) zRange := join(curves,3) -- print(NUMFUNEVALS::OUT) [[xRange,yRange,zRange],[tRange,xRange,yRange,zRange], p.screenres,p.axisLabels,curves] pointPlot(f:F -> P,tRange:R) == p := basicPlot(f,tRange) r := p.ranges NUMFUNEVALS := MINPOINTS if adaptive3D?() then p := adaptivePlot(p,first r,second r,third r,fourth r,8,SCREENRES) -- print(NUMFUNEVALS::OUT) -- print(p::OUT) [ rest r, r, SCREENRES, nil(), [ p ] ] pointPlot(f:F -> P,tRange:R,xRange:R,yRange:R,zRange:R) == p := pointPlot(f,tRange) p.display:= [checkRange xRange,checkRange yRange,checkRange zRange] p myTrap: (F-> F, F) -> F myTrap(ff:F-> F, f:F):F == s: Maybe F := trapNumericErrors(ff(f))$Lisp s case nothing => quietDoubleNaN()$Lisp s plot(f1:F -> F,f2:F -> F,f3:F -> F,col:F -> F,tRange:R) == p := basicPlot(point(myTrap(f1,#1),myTrap(f2,#1),myTrap(f3,#1),col(#1)),tRange) r := p.ranges NUMFUNEVALS := MINPOINTS if adaptive3D?() then p := adaptivePlot(p,first r,second r,third r,fourth r,8,SCREENRES) -- print(NUMFUNEVALS::OUT) [ rest r, r, SCREENRES, nil(), [ p ] ] plot(f1:F -> F,f2:F -> F,f3:F -> F,col:F -> F,_ tRange:R,xRange:R,yRange:R,zRange:R) == p := plot(f1,f2,f3,col,tRange) p.display:= [checkRange xRange,checkRange yRange,checkRange zRange] p --% terminal output coerce r == spaces := " " :: OUT xSymbol := "x = " :: OUT; ySymbol := "y = " :: OUT zSymbol := "z = " :: OUT; tSymbol := "t = " :: OUT tRange := (parametricRange r) :: OUT f : L OUT := nil() for curve in r.functions repeat xRange := coerce curve.ranges.1 yRange := coerce curve.ranges.2 zRange := coerce curve.ranges.3 l : L OUT := [xSymbol,xRange,spaces,ySymbol,yRange,_ spaces,zSymbol,zRange] l := concat!([tSymbol,tRange,spaces],l) h : OUT := hconcat l l := [p::OUT for p in curve.points] f := concat(vconcat concat(h,l),f) prefix("PLOT" :: OUT,reverse! f) ----% graphics output listBranches plot == outList : L L P := nil() for curve in plot.functions repeat outList := concat(curve.points,outList) outList @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- Copyright (C) 2007-2010, Gabriel Dos Reis. -- All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain PLOT3D Plot3D>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}