\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra plot.spad} \author{Michael Monagan, Clifton J. Williamson, Jon Steinbach, Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain PLOT Plot} <<domain PLOT Plot>>= )abbrev domain PLOT Plot ++ Author: Michael Monagan (revised by Clifton J. Williamson) ++ Date Created: Jan 1988 ++ Date Last Updated: 30 Nov 1990 by Jonathan Steinbach ++ Basic Operations: plot, pointPlot, plotPolar, parametric?, zoom, refine, ++ tRange, minPoints, setMinPoints, maxPoints, screenResolution, adaptive?, ++ setAdaptive, numFunEvals, debug ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: plot, function, parametric ++ References: ++ Description: The Plot domain supports plotting of functions defined over a ++ real number system. A real number system is a model for the real ++ numbers and as such may be an approximation. For example ++ floating point numbers and infinite continued fractions. ++ The facilities at this point are limited to 2-dimensional plots ++ or either a single function or a parametric function. Plot(): Exports == Implementation where B ==> Boolean F ==> DoubleFloat I ==> Integer L ==> List N ==> NonNegativeInteger OUT ==> OutputForm P ==> Point F RN ==> Fraction Integer S ==> String SEG ==> Segment R ==> Segment F C ==> Record(source: F -> P,ranges: L R,knots: L F,points: L P) Exports ==> PlottablePlaneCurveCategory with --% function plots plot: (F -> F,R) -> % ++ plot(f,a..b) plots the function \spad{f(x)} on the interval \spad{[a,b]}. plot: (F -> F,R,R) -> % ++ plot(f,a..b,c..d) plots the function \spad{f(x)} on the interval ++ \spad{[a,b]}; y-range of \spad{[c,d]} is noted in Plot object. --% multiple function plots plot: (L(F -> F),R) -> % ++ plot([f1,...,fm],a..b) plots the functions \spad{y = f1(x)},..., ++ \spad{y = fm(x)} on the interval \spad{a..b}. plot: (L(F -> F),R,R) -> % ++ plot([f1,...,fm],a..b,c..d) plots the functions \spad{y = f1(x)},..., ++ \spad{y = fm(x)} on the interval \spad{a..b}; y-range of \spad{[c,d]} is ++ noted in Plot object. --% parametric plots plot: (F -> F,F -> F,R) -> % ++ plot(f,g,a..b) plots the parametric curve \spad{x = f(t)}, \spad{y = g(t)} ++ as t ranges over the interval \spad{[a,b]}. plot: (F -> F,F -> F,R,R,R) -> % ++ plot(f,g,a..b,c..d,e..f) plots the parametric curve \spad{x = f(t)}, ++ \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}; x-range ++ of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object. --% parametric plots pointPlot: (F -> P,R) -> % ++ pointPlot(t +-> (f(t),g(t)),a..b) plots the parametric curve ++ \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}. pointPlot: (F -> P,R,R,R) -> % ++ pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f) plots the parametric ++ curve \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}; ++ x-range of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object. --% polar plots plotPolar: (F -> F,R) -> % ++ plotPolar(f,a..b) plots the polar curve \spad{r = f(theta)} as ++ theta ranges over the interval \spad{[a,b]}; this is the same as ++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}. plotPolar: (F -> F) -> % ++ plotPolar(f) plots the polar curve \spad{r = f(theta)} as theta ++ ranges over the interval \spad{[0,2*%pi]}; this is the same as ++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}. plot: (%,R) -> % -- change the range ++ plot(x,r) \undocumented parametric?: % -> B ++ parametric? determines whether it is a parametric plot? zoom: (%,R) -> % ++ zoom(x,r) \undocumented zoom: (%,R,R) -> % ++ zoom(x,r,s) \undocumented refine: (%,R) -> % ++ refine(x,r) \undocumented refine: % -> % ++ refine(p) performs a refinement on the plot p tRange: % -> R ++ tRange(p) returns the range of the parameter in a parametric plot p minPoints: () -> I ++ minPoints() returns the minimum number of points in a plot setMinPoints: I -> I ++ setMinPoints(i) sets the minimum number of points in a plot to i maxPoints: () -> I ++ maxPoints() returns the maximum number of points in a plot setMaxPoints: I -> I ++ setMaxPoints(i) sets the maximum number of points in a plot to i screenResolution: () -> I ++ screenResolution() returns the screen resolution setScreenResolution: I -> I ++ setScreenResolution(i) sets the screen resolution to i adaptive?: () -> B ++ adaptive?() determines whether plotting be done adaptively setAdaptive: B -> B ++ setAdaptive(true) turns adaptive plotting on ++ \spad{setAdaptive(false)} turns adaptive plotting off numFunEvals: () -> I ++ numFunEvals() returns the number of points computed debug: B -> B ++ debug(true) turns debug mode on ++ \spad{debug(false)} turns debug mode off Implementation ==> add import PointPackage(DoubleFloat) --% local functions checkRange : R -> R -- checks that left-hand endpoint is less than right-hand endpoint intersect : (R,R) -> R -- intersection of two intervals union : (R,R) -> R -- union of two intervals join : (L C,I) -> R parametricRange: % -> R select : (L P,P -> F,(F,F) -> F) -> F rangeRefine : (C,R) -> C adaptivePlot : (C,R,R,R,I) -> C basicPlot : (F -> P,R) -> C basicRefine : (C,R) -> C pt : (F,F) -> P Pnan? : P -> Boolean --% representation Rep := Record( parametric: B, _ display: L R, _ bounds: L R, _ axisLabels: L S, _ functions: L C ) --% global constants ADAPTIVE: B := true MINPOINTS: I := 49 MAXPOINTS: I := 1000 NUMFUNEVALS: I := 0 SCREENRES: I := 500 ANGLEBOUND: F := cos inv (4::F) DEBUG: B := false Pnan?(x) == any?(nan?,x) --% graphics output listBranches plot == outList : L L P := nil() for curve in plot.functions repeat -- curve is C newl:L P:=nil() for p in curve.points repeat if not Pnan? p then newl:=cons(p,newl) else if not empty? newl then outList := concat(newl:=reverse! newl,outList) newl:=nil() if not empty? newl then outList := concat(newl:=reverse! newl,outList) -- print(outList::OutputForm) outList checkRange r == (lo r > hi r => error "ranges cannot be negative"; r) intersect(s,t) == checkRange (max(lo s,lo t) .. min(hi s,hi t)) union(s,t) == min(lo s,lo t) .. max(hi s,hi t) join(l,i) == rr := first l u : R := i = 0 => first(rr.ranges) i = 1 => second(rr.ranges) third(rr.ranges) for r in rest l repeat i = 0 => u := union(u,first(r.ranges)) i = 1 => u := union(u,second(r.ranges)) u := union(u,third(r.ranges)) u parametricRange r == first(r.bounds) minPoints() == MINPOINTS setMinPoints n == if n < 3 then error "three points minimum required" if MAXPOINTS < n then MAXPOINTS := n MINPOINTS := n maxPoints() == MAXPOINTS setMaxPoints n == if n < 3 then error "three points minimum required" if MINPOINTS > n then MINPOINTS := n MAXPOINTS := n screenResolution() == SCREENRES setScreenResolution n == if n < 2 then error "buy a new terminal" SCREENRES := n adaptive?() == ADAPTIVE setAdaptive b == ADAPTIVE := b parametric? p == p.parametric numFunEvals() == NUMFUNEVALS debug b == DEBUG := b xRange plot == second plot.bounds yRange plot == third plot.bounds tRange plot == first plot.bounds select(l,f,g) == m := f first l if nan? m then m := 0 for p in rest l repeat n := m m := g(m, f p) if nan? m then m := n m rangeRefine(curve,nRange) == checkRange nRange; l := lo nRange; h := hi nRange t := curve.knots; p := curve.points; f := curve.source while not null t and first t < l repeat (t := rest t; p := rest p) c: L F := nil(); q: L P := nil() while not null t and (first t) <= h repeat c := concat(first t,c); q := concat(first p,q) t := rest t; p := rest p if null c then return basicPlot(f,nRange) if first c < h then c := concat(h,c) q := concat(f h,q) NUMFUNEVALS := NUMFUNEVALS + 1 t := c := reverse! c; p := q := reverse! q s := (h-l)/(minPoints()::F-1) if (first t) ~= l then t := c := concat(l,c) p := q := concat(f l,p) NUMFUNEVALS := NUMFUNEVALS + 1 while not null rest t repeat n := wholePart((second(t) - first(t))/s) d := (second(t) - first(t))/((n+1)::F) for i in 1..n repeat t.rest := concat(first(t) + d,rest t) p.rest := concat(f second t,rest p) NUMFUNEVALS := NUMFUNEVALS + 1 t := rest t; p := rest p t := rest t p := rest p xRange := select(q,xCoord,min) .. select(q,xCoord,max) yRange := select(q,yCoord,min) .. select(q,yCoord,max) [ f, [nRange,xRange,yRange], c, q] adaptivePlot(curve,tRange,xRange,yRange,pixelfraction) == xDiff := hi xRange - lo xRange yDiff := hi yRange - lo yRange xDiff = 0 or yDiff = 0 => curve l := lo tRange; h := hi tRange (tDiff := h-l) = 0 => curve if %fNaN?(yDiff)$Foreign(Builtin) then yDiff := 1@F t := curve.knots #t < 3 => curve p := curve.points; f := curve.source minLength:F := 4::F/500::F maxLength:F := 1::F/6::F tLimit := tDiff/(pixelfraction*500)::F while not null t and first t < l repeat (t := rest t; p := rest p) #t < 3 => curve headert := t; headerp := p -- jitter the input points -- while not null rest rest t repeat -- t0 := second(t); t1 := third(t) -- jitter := (random()$I) :: F -- jitter := sin (jitter) -- val := t0 + jitter * (t1-t0)/10::F -- t.2 := val; p.2 := f val -- t := rest t; p := rest p -- t := headert; p := headerp st := t; sp := p todot : L L F := nil() todop : L L P := nil() while not null rest rest st repeat todot := concat!(todot, st) todop := concat!(todop, sp) st := rest st; sp := rest sp st := headert; sp := headerp todo1 := todot; todo2 := todop n : I := 0 while not null todo1 repeat st := first(todo1) t0 := first(st); t1 := second(st); t2 := third(st) if t2 > h then leave t2 - t0 < tLimit => todo1 := rest todo1 todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) sp := first(todo2) x0 := xCoord first(sp); y0 := yCoord first(sp) x1 := xCoord second(sp); y1 := yCoord second(sp) x2 := xCoord third(sp); y2 := yCoord third(sp) a1 := (x1-x0)/xDiff; b1 := (y1-y0)/yDiff a2 := (x2-x1)/xDiff; b2 := (y2-y1)/yDiff s1 := sqrt(a1**2+b1**2); s2 := sqrt(a2**2+b2**2) dp := a1*a2+b1*b2 s1 < maxLength and s2 < maxLength and _ (s1 = 0::F or s2 = 0::F or s1 < minLength and s2 < minLength or _ dp/s1/s2 > ANGLEBOUND) => todo1 := rest todo1 todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) if n > MAXPOINTS then leave else n := n + 1 st := rest t if not null rest rest st then tm := (t0+t1)/2::F tj := tm t.rest := concat(tj,rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := rest todo1; todo2 := rest todo2 tm := (t1+t2)/2::F tj := tm t.rest := concat(tj, rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) todo1 := rest todo1 todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) else tm := (t0+t1)/2::F tj := tm t.rest := concat(tj,rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) t := rest t; p := rest p tm := (t1+t2)/2::F tj := tm t.rest := concat(tj, rest t) p.rest := concat(f tj, rest p) todo1 := concat!(todo1, t) todo2 := concat!(todo2, p) todo1 := rest todo1 todo2 := rest todo2 if not null todo1 then (t := first(todo1); p := first(todo2)) positive? n => NUMFUNEVALS := NUMFUNEVALS + n t := curve.knots; p := curve.points xRange := select(p,xCoord,min) .. select(p,xCoord,max) yRange := select(p,yCoord,min) .. select(p,yCoord,max) [ curve.source, [tRange,xRange,yRange], t, p ] curve basicPlot(f,tRange) == checkRange tRange l := lo tRange h := hi tRange t : L F := list l p : L P := list f l s := (h-l)/(minPoints()-1)::F for i in 2..minPoints()-1 repeat l := l+s t := concat(l,t) p := concat(f l,p) t := reverse! concat(h,t) p := reverse! concat(f h,p) -- print(p::OutputForm) xRange : R := select(p,xCoord,min) .. select(p,xCoord,max) yRange : R := select(p,yCoord,min) .. select(p,yCoord,max) [ f, [tRange,xRange,yRange], t, p ] zoom(p,xRange) == [p.parametric, [xRange,third(p.display)], p.bounds, _ p.axisLabels, p.functions] zoom(p,xRange,yRange) == [p.parametric, [xRange,yRange], p.bounds, _ p.axisLabels, p.functions] basicRefine(curve,nRange) == tRange:R := first curve.ranges -- curve := copy$C curve -- Yet another compiler bug curve: C := [curve.source,curve.ranges,curve.knots,curve.points] t := curve.knots := copy curve.knots p := curve.points := copy curve.points l := lo nRange; h := hi nRange f := curve.source while not null rest t and first t < h repeat second(t) < l => (t := rest t; p := rest p) -- insert new point between t.0 and t.1 tm : F := (first(t) + second(t))/2::F -- if DEBUG then output$O (tm::E) pm := f tm NUMFUNEVALS := NUMFUNEVALS + 1 t.rest := concat(tm,rest t); t := rest rest t p.rest := concat(pm,rest p); p := rest rest p t := curve.knots; p := curve.points xRange := select(p,xCoord,min) .. select(p,xCoord,max) yRange := select(p,yCoord,min) .. select(p,yCoord,max) [ curve.source, [tRange,xRange,yRange], t, p ] refine p == refine(p,parametricRange p) refine(p,nRange) == NUMFUNEVALS := 0 tRange := parametricRange p nRange := intersect(tRange,nRange) curves: L C := [basicRefine(c,nRange) for c in p.functions] xRange := join(curves,1); yRange := join(curves,2) if adaptive?() then tlimit := if parametric? p then 8 else 1 curves := [adaptivePlot(c,nRange,xRange,yRange, _ tlimit) for c in curves] xRange := join(curves,1); yRange := join(curves,2) -- print(NUMFUNEVALS::OUT) [p.parametric, p.display, [tRange,xRange,yRange], _ p.axisLabels, curves ] plot(p:%,tRange:R) == -- re plot p on a new range making use of the points already -- computed if possible NUMFUNEVALS := 0 curves: L C := [rangeRefine(c,tRange) for c in p.functions] xRange := join(curves,1); yRange := join(curves,2) if adaptive?() then tlimit := if parametric? p then 8 else 1 curves := [adaptivePlot(c,tRange,xRange,yRange,tlimit) for c in curves] xRange := join(curves,1); yRange := join(curves,2) -- print(NUMFUNEVALS::OUT) [ p.parametric, [xRange,yRange], [tRange,xRange,yRange], p.axisLabels, curves ] pt(xx,yy) == point(l : L F := [xx,yy]) myTrap: (F-> F, F) -> F myTrap(ff:F-> F, f:F):F == s: Maybe F := trapNumericErrors(ff(f))$Lisp s case nothing => quietDoubleNaN()$Lisp r:F := s@F r > max()$F or r < min()$F => quietDoubleNaN()$Lisp r plot(f:F -> F,xRange:R) == p := basicPlot(pt(#1,myTrap(f,#1)),xRange) r := p.ranges NUMFUNEVALS := minPoints() if adaptive?() then p := adaptivePlot(p,first r,second r,third r,1) r := p.ranges [ false, rest r, r, nil(), [ p ] ] plot(f:F -> F,xRange:R,yRange:R) == p := plot(f,xRange) p.display := [xRange,checkRange yRange] p plot(f:F -> F,g:F -> F,tRange:R) == p := basicPlot(pt(myTrap(f,#1),myTrap(g,#1)),tRange) r := p.ranges NUMFUNEVALS := minPoints() if adaptive?() then p := adaptivePlot(p,first r,second r,third r,8) r := p.ranges [ true, rest r, r, nil(), [ p ] ] plot(f:F -> F,g:F -> F,tRange:R,xRange:R,yRange:R) == p := plot(f,g,tRange) p.display := [checkRange xRange,checkRange yRange] p pointPlot(f:F -> P,tRange:R) == p := basicPlot(f,tRange) r := p.ranges NUMFUNEVALS := minPoints() if adaptive?() then p := adaptivePlot(p,first r,second r,third r,8) r := p.ranges [ true, rest r, r, nil(), [ p ] ] pointPlot(f:F -> P,tRange:R,xRange:R,yRange:R) == p := pointPlot(f,tRange) p.display := [checkRange xRange,checkRange yRange] p plot(l:L(F -> F),xRange:R) == if null l then error "empty list of functions" t: L C := [ basicPlot(pt(#1,myTrap(f,#1)),xRange) for f in l ] yRange := join(t,2) NUMFUNEVALS := # l * minPoints() if adaptive?() then t := [adaptivePlot(p,xRange,xRange,yRange,1) _ for f in l for p in t] yRange := join(t,2) -- print(NUMFUNEVALS::OUT) [false, [xRange,yRange], [xRange,xRange,yRange], nil(), t ] plot(l:L(F -> F),xRange:R,yRange:R) == p := plot(l,xRange) p.display := [xRange,checkRange yRange] p plotPolar(f,thetaRange) == plot(f(#1) * cos(#1),f(#1) * sin(#1),thetaRange) plotPolar f == plotPolar(f,segment(0,2*pi())) --% terminal output coerce r == spaces: OUT := coerce " " xSymbol := "x = " :: OUT ySymbol := "y = " :: OUT tSymbol := "t = " :: OUT plotSymbol := "PLOT" :: OUT tRange := (parametricRange r) :: OUT f : L OUT := nil() for curve in r.functions repeat xRange := second(curve.ranges) :: OUT yRange := third(curve.ranges) :: OUT l : L OUT := [xSymbol,xRange,spaces,ySymbol,yRange] if parametric? r then l := concat!([tSymbol,tRange,spaces],l) h : OUT := hconcat l l := [p::OUT for p in curve.points] f := concat(vconcat concat(h,l),f) prefix("PLOT" :: OUT, reverse! f) @ \section{package PLOT1 PlotFunctions1} <<package PLOT1 PlotFunctions1>>= import ConvertibleTo InputForm import Symbol import DoubleFloat import Segment import Plot )abbrev package PLOT1 PlotFunctions1 ++ Authors: R.T.M. Bronstein, C.J. Williamson ++ Date Created: Jan 1989 ++ Date Last Updated: 4 Mar 1990 ++ Basic Operations: plot, plotPolar ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: PlotFunctions1 provides facilities for plotting curves ++ where functions SF -> SF are specified by giving an expression PlotFunctions1(S:ConvertibleTo InputForm): with plot : (S, Symbol, Segment DoubleFloat) -> Plot ++ plot(fcn,x,seg) plots the graph of \spad{y = f(x)} on a interval plot : (S, S, Symbol, Segment DoubleFloat) -> Plot ++ plot(f,g,t,seg) plots the graph of \spad{x = f(t)}, \spad{y = g(t)} as t ++ ranges over an interval. plotPolar : (S, Symbol, Segment DoubleFloat) -> Plot ++ plotPolar(f,theta,seg) plots the graph of \spad{r = f(theta)} as ++ theta ranges over an interval plotPolar : (S, Symbol) -> Plot ++ plotPolar(f,theta) plots the graph of \spad{r = f(theta)} as ++ theta ranges from 0 to 2 pi == add import MakeFloatCompiledFunction(S) plot(f, x, xRange) == plot(makeFloatFunction(f, x), xRange) plotPolar(f,theta) == plotPolar(makeFloatFunction(f,theta)) plot(f1, f2, t, tRange) == plot(makeFloatFunction(f1, t), makeFloatFunction(f2, t), tRange) plotPolar(f,theta,thetaRange) == plotPolar(makeFloatFunction(f,theta),thetaRange) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- Copyright (C) 2007-2010, Gabriel Dos Reis. -- All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain PLOT Plot>> <<package PLOT1 PlotFunctions1>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}