\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra pgcd.spad} \author{Michael Lucks, Patrizia Gianni, Barry Trager, Frederic Lehobey} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package PGCD PolynomialGcdPackage} \subsection{failure case in gcdPrimitive(p1:SUPP,p2:SUPP) : SUPP} Barry Trager has discovered and fixed a bug in pgcd.spad which occasionally (depending on choices of random substitutions) could return the wrong gcd. The fix is simply to comment out one line in $gcdPrimitive$ which was causing the division test to be skipped. The line used to read: \begin{verbatim} degree result=d1 => result \end{verbatim} but has now been removed. <<bmtfix>>= @ <<package PGCD PolynomialGcdPackage>>= )abbrev package PGCD PolynomialGcdPackage ++ Author: Michael Lucks, P. Gianni ++ Date Created: ++ Date Last Updated: 17 June 1996 ++ Fix History: Moved unitCanonicals for performance (BMT); ++ Fixed a problem with gcd(x,0) (Frederic Lehobey) ++ Basic Functions: gcd, content ++ Related Constructors: Polynomial ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package computes multivariate polynomial gcd's using ++ a hensel lifting strategy. The contraint on the coefficient ++ domain is imposed by the lifting strategy. It is assumed that ++ the coefficient domain has the property that almost all specializations ++ preserve the degree of the gcd. I ==> Integer NNI ==> NonNegativeInteger PI ==> PositiveInteger PolynomialGcdPackage(E,OV,R,P):C == T where R : EuclideanDomain P : PolynomialCategory(R,E,OV) OV : OrderedSet E : OrderedAbelianMonoidSup SUPP ==> SparseUnivariatePolynomial P C == with gcd : (P,P) -> P ++ gcd(p,q) computes the gcd of the two polynomials p and q. gcd : List P -> P ++ gcd(lp) computes the gcd of the list of polynomials lp. gcd : (SUPP,SUPP) -> SUPP ++ gcd(p,q) computes the gcd of the two polynomials p and q. gcd : List SUPP -> SUPP ++ gcd(lp) computes the gcd of the list of polynomials lp. gcdPrimitive : (P,P) -> P ++ gcdPrimitive(p,q) computes the gcd of the primitive polynomials ++ p and q. gcdPrimitive : (SUPP,SUPP) -> SUPP ++ gcdPrimitive(p,q) computes the gcd of the primitive polynomials ++ p and q. gcdPrimitive : List P -> P ++ gcdPrimitive lp computes the gcd of the list of primitive ++ polynomials lp. T == add SUP ==> SparseUnivariatePolynomial R LGcd ==> Record(locgcd:SUPP,goodint:List List R) UTerm ==> Record(lpol:List SUP,lint:List List R,mpol:SUPP) pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R import MultivariateLifting(E,OV,R,P) import FactoringUtilities(E,OV,R,P) -------- Local Functions -------- myran : Integer -> Union(R,"failed") better : (P,P) -> Boolean failtest : (SUPP,SUPP,SUPP) -> Boolean monomContent : (SUPP) -> SUPP gcdMonom : (SUPP,SUPP) -> SUPP gcdTermList : (P,P) -> P good : (SUPP,List OV,List List R) -> Record(upol:SUP,inval:List List R) chooseVal : (SUPP,SUPP,List OV,List List R) -> Union(UTerm,"failed") localgcd : (SUPP,SUPP,List OV,List List R) -> LGcd notCoprime : (SUPP,SUPP, List NNI,List OV,List List R) -> SUPP imposelc : (List SUP,List OV,List R,List P) -> List SUP lift? :(SUPP,SUPP,UTerm,List NNI,List OV) -> Union(s:SUPP,failed:"failed",notCoprime:"notCoprime") lift :(SUPP,SUP,SUP,P,List OV,List NNI,List R) -> Union(SUPP,"failed") ---- Local functions ---- -- test if something wrong happened in the gcd failtest(f:SUPP,p1:SUPP,p2:SUPP) : Boolean == (p1 exquo f) case "failed" or (p2 exquo f) case "failed" -- Choose the integers chooseVal(p1:SUPP,p2:SUPP,lvr:List OV,ltry:List List R):Union(UTerm,"failed") == d1:=degree(p1) d2:=degree(p2) dd:NNI:=0$NNI nvr:NNI:=#lvr lval:List R :=[] range:I:=8 repeat range:=2*range lval:=[ran(range) for i in 1..nvr] member?(lval,ltry) => "new point" ltry:=cons(lval,ltry) uf1:SUP:=completeEval(p1,lvr,lval) degree uf1 ~= d1 => "new point" uf2:SUP:= completeEval(p2,lvr,lval) degree uf2 ~= d2 => "new point" u:=gcd(uf1,uf2) du:=degree u --the univariate gcd is 1 if du=0 then return [[1$SUP],ltry,0$SUPP]$UTerm ugcd:List SUP:=[u,(uf1 exquo u)::SUP,(uf2 exquo u)::SUP] uterm:=[ugcd,ltry,0$SUPP]$UTerm dd=0 => dd:=du --the degree is not changed du=dd => --test if one of the polynomials is the gcd dd=d1 => if not ((f:=p2 exquo p1) case "failed") then return [[u],ltry,p1]$UTerm if dd~=d2 then dd:=(dd-1)::NNI dd=d2 => if not ((f:=p1 exquo p2) case "failed") then return [[u],ltry,p2]$UTerm dd:=(dd-1)::NNI return uterm --the new gcd has degree less du<dd => dd:=du good(f:SUPP,lvr:List OV,ltry:List List R):Record(upol:SUP,inval:List List R) == nvr:NNI:=#lvr range:I:=1 while true repeat range:=2*range lval:=[ran(range) for i in 1..nvr] member?(lval,ltry) => "new point" ltry:=cons(lval,ltry) uf:=completeEval(f,lvr,lval) if degree gcd(uf,differentiate uf)=0 then return [uf,ltry] -- impose the right lc imposelc(lipol:List SUP, lvar:List OV,lval:List R,leadc:List P):List SUP == result:List SUP :=[] for pol in lipol for leadpol in leadc repeat p1:= univariate eval(leadpol,lvar,lval) * pol result:= cons((p1 exquo leadingCoefficient pol)::SUP,result) reverse result --Compute the gcd between not coprime polynomials notCoprime(g:SUPP,p2:SUPP,ldeg:List NNI,lvar1:List OV,ltry:List List R) : SUPP == g1:=gcd(g,differentiate g) l1 := (g exquo g1)::SUPP lg:LGcd:=localgcd(l1,p2,lvar1,ltry) (l,ltry):=(lg.locgcd,lg.goodint) lval:=ltry.first p2l:=(p2 exquo l)::SUPP (gd1,gd2):=(l,l) ul:=completeEval(l,lvar1,lval) dl:=degree ul if degree gcd(ul,differentiate ul) ~=0 then newchoice:=good(l,lvar1,ltry) ul:=newchoice.upol ltry:=newchoice.inval lval:=ltry.first ug1:=completeEval(g1,lvar1,lval) ulist:=[ug1,completeEval(p2l,lvar1,lval)] lcpol:List P:=[leadingCoefficient g1, leadingCoefficient p2] while true repeat d:SUP:=gcd(cons(ul,ulist)) if degree d =0 then return gd1 lquo:=(ul exquo d)::SUP if degree lquo ~=0 then lgcd:=gcd(cons(leadingCoefficient l,lcpol)) (gdl:=lift(l,d,lquo,lgcd,lvar1,ldeg,lval)) case "failed" => return notCoprime(g,p2,ldeg,lvar1,ltry) l:=gd2:=gdl::SUPP ul:=completeEval(l,lvar1,lval) dl:=degree ul gd1:=gd1*gd2 ulist:=[(uf exquo d)::SUP for uf in ulist] gcdPrimitive(p1:SUPP,p2:SUPP) : SUPP == if (d1:=degree(p1)) > (d2:=degree(p2)) then (p1,p2):= (p2,p1) (d1,d2):= (d2,d1) degree p1 = 0 => p1 = 0 => unitCanonical p2 unitCanonical p1 lvar:List OV:=sort(#1>#2,setUnion(variables p1,variables p2)) empty? lvar => raisePolynomial(gcd(lowerPolynomial p1,lowerPolynomial p2)) (p2 exquo p1) case SUPP => unitCanonical p1 ltry:List List R:=empty() totResult:=localgcd(p1,p2,lvar,ltry) result: SUPP:=totResult.locgcd -- special cases result=1 => 1$SUPP <<bmtfix>> while failtest(result,p1,p2) repeat -- SAY$Lisp "retrying gcd" ltry:=totResult.goodint totResult:=localgcd(p1,p2,lvar,ltry) result:=totResult.locgcd result --local function for the gcd : it returns the evaluation point too localgcd(p1:SUPP,p2:SUPP,lvar:List(OV),ltry:List List R) : LGcd == uterm:=chooseVal(p1,p2,lvar,ltry)::UTerm ltry:=uterm.lint listpol:= uterm.lpol ud:=listpol.first dd:= degree ud --the univariate gcd is 1 dd=0 => [1$SUPP,ltry]$LGcd --one of the polynomials is the gcd dd=degree(p1) or dd=degree(p2) => [uterm.mpol,ltry]$LGcd ldeg:List NNI:=map(min,degree(p1,lvar),degree(p2,lvar)) -- if there is a polynomial g s.t. g/gcd and gcd are coprime ... -- I can lift (h:=lift?(p1,p2,uterm,ldeg,lvar)) case notCoprime => [notCoprime(p1,p2,ldeg,lvar,ltry),ltry]$LGcd h case failed => localgcd(p1,p2,lvar,ltry) -- skip bad values? [h.s,ltry]$LGcd -- content, internal functions return the poly if it is a monomial monomContent(p:SUPP):SUPP == degree(p)=0 => 1 md:= minimumDegree(p) monomial(gcd sort(better,coefficients p),md) -- Ordering for gcd purposes better(p1:P,p2:P):Boolean == ground? p1 => true ground? p2 => false degree(p1,mainVariable(p1)::OV) < degree(p2,mainVariable(p2)::OV) -- Gcd between polynomial p1 and p2 with -- mainVariable p1 < x=mainVariable p2 gcdTermList(p1:P,p2:P) : P == termList:=sort(better, cons(p1,coefficients univariate(p2,(mainVariable p2)::OV))) q:P:=termList.first for term in termList.rest until q = 1$P repeat q:= gcd(q,term) q -- Gcd between polynomials with the same mainVariable gcd(p1:SUPP,p2:SUPP): SUPP == if degree(p1) > degree(p2) then (p1,p2):= (p2,p1) degree p1 = 0 => p1 = 0 => unitCanonical p2 p1 = 1 => unitCanonical p1 gcd(leadingCoefficient p1, content p2)::SUPP reductum(p1)=0 => gcdMonom(p1,monomContent p2) c1:= monomContent(p1) reductum(p2)=0 => gcdMonom(c1,p2) c2:= monomContent(p2) p1:= (p1 exquo c1)::SUPP p2:= (p2 exquo c2)::SUPP gcdPrimitive(p1,p2) * gcdMonom(c1,c2) -- gcd between 2 monomials gcdMonom(m1:SUPP,m2:SUPP):SUPP == monomial(gcd(leadingCoefficient(m1),leadingCoefficient(m2)), min(degree(m1),degree(m2))) --If there is a pol s.t. pol/gcd and gcd are coprime I can lift lift?(p1:SUPP,p2:SUPP,uterm:UTerm,ldeg:List NNI, lvar:List OV) : Union(s:SUPP,failed:"failed",notCoprime:"notCoprime") == leadpol:Boolean:=false (listpol,lval):=(uterm.lpol,uterm.lint.first) d:=listpol.first listpol:=listpol.rest nolift:Boolean:=true uf: SUP for uf in listpol repeat --note uf and d not necessarily primitive degree gcd(uf,d) =0 => nolift:=false nolift => ["notCoprime"] f:SUPP:=([p1,p2]$List(SUPP)).(position(uf,listpol)) lgcd:=gcd(leadingCoefficient p1, leadingCoefficient p2) (l:=lift(f,d,uf,lgcd,lvar,ldeg,lval)) case "failed" => ["failed"] [l :: SUPP] -- interface with the general "lifting" function lift(f:SUPP,d:SUP,uf:SUP,lgcd:P,lvar:List OV, ldeg:List NNI,lval:List R):Union(SUPP,"failed") == leadpol:Boolean:=false lcf:P lcf:=leadingCoefficient f df:=degree f leadlist:List(P):=[] if lgcd~=1 then leadpol:=true f:=lgcd*f ldeg:=[n0+n1 for n0 in ldeg for n1 in degree(lgcd,lvar)] lcd:R:=leadingCoefficient d if degree(lgcd)=0 then d:=((retract lgcd) *d exquo lcd)::SUP else d:=(retract(eval(lgcd,lvar,lval)) * d exquo lcd)::SUP uf:=lcd*uf leadlist:=[lgcd,lcf] lg:=imposelc([d,uf],lvar,lval,leadlist) (pl:=lifting(f,lvar,lg,lval,leadlist,ldeg,pmod)) case "failed" => "failed" plist := pl :: List SUPP (p0:SUPP,p1:SUPP):=(plist.first,plist.2) if completeEval(p0,lvar,lval) ~= lg.first then (p0,p1):=(p1,p0) not leadpol => p0 p0 exquo content(p0) -- Gcd for two multivariate polynomials gcd(p1:P,p2:P) : P == ground? p1 => p1 := unitCanonical p1 p1 = 1$P => p1 p1 = 0$P => unitCanonical p2 ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P gcdTermList(p1,p2) ground? p2 => p2 := unitCanonical p2 p2 = 1$P => p2 p2 = 0$P => unitCanonical p1 gcdTermList(p2,p1) (p1:= unitCanonical(p1)) = (p2:= unitCanonical(p2)) => p1 mv1:= mainVariable(p1)::OV mv2:= mainVariable(p2)::OV mv1 = mv2 => multivariate(gcd(univariate(p1,mv1), univariate(p2,mv1)),mv1) mv1 < mv2 => gcdTermList(p1,p2) gcdTermList(p2,p1) -- Gcd for a list of multivariate polynomials gcd(listp:List P) : P == lf:=sort(better,listp) f:=lf.first for g in lf.rest repeat f:=gcd(f,g) if f=1$P then return f f gcd(listp:List SUPP) : SUPP == lf:=sort(degree(#1)<degree(#2),listp) f:=lf.first for g in lf.rest repeat f:=gcd(f,g) if f=1 then return f f -- Gcd for primitive polynomials gcdPrimitive(p1:P,p2:P):P == (p1:= unitCanonical(p1)) = (p2:= unitCanonical(p2)) => p1 ground? p1 => ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P p1 = 0$P => p2 1$P ground? p2 => p2 = 0$P => p1 1$P mv1:= mainVariable(p1)::OV mv2:= mainVariable(p2)::OV mv1 = mv2 => md:=min(minimumDegree(p1,mv1),minimumDegree(p2,mv2)) mp:=1$P if md>1 then mp:=(mv1::P)**md p1:=(p1 exquo mp)::P p2:=(p2 exquo mp)::P up1 := univariate(p1,mv1) up2 := univariate(p2,mv2) mp*multivariate(gcdPrimitive(up1,up2),mv1) 1$P -- Gcd for a list of primitive multivariate polynomials gcdPrimitive(listp:List P) : P == lf:=sort(better,listp) f:=lf.first for g in lf.rest repeat f:=gcdPrimitive(f,g) if f=1$P then return f f @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package PGCD PolynomialGcdPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}