\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra pgcd.spad}
\author{Michael Lucks, Patrizia Gianni, Barry Trager, Frederic Lehobey}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PGCD PolynomialGcdPackage}
\subsection{failure case in gcdPrimitive(p1:SUPP,p2:SUPP) : SUPP}
Barry Trager has discovered and fixed a bug in pgcd.spad which occasionally
(depending on choices of random substitutions) could return the 
wrong gcd. The fix is simply to comment out one line in 
$gcdPrimitive$ which was causing the division test to be skipped.
The line used to read:
\begin{verbatim}
        degree result=d1 => result
\end{verbatim}
but has now been removed.
<<bmtfix>>=
@

<<package PGCD PolynomialGcdPackage>>=
)abbrev package PGCD PolynomialGcdPackage
++ Author: Michael Lucks, P. Gianni
++ Date Created:
++ Date Last Updated: 17 June 1996
++ Fix History: Moved unitCanonicals for performance (BMT);
++              Fixed a problem with gcd(x,0) (Frederic Lehobey)
++ Basic Functions: gcd, content
++ Related Constructors: Polynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This package computes multivariate polynomial gcd's using
++ a hensel lifting strategy. The contraint on the coefficient
++ domain is imposed by the lifting strategy. It is assumed that
++ the coefficient domain has the property that almost all specializations
++ preserve the degree of the gcd.
 
I        ==> Integer
NNI      ==> NonNegativeInteger
PI       ==> PositiveInteger
 
PolynomialGcdPackage(E,OV,R,P):C == T where
    R     :  EuclideanDomain
    P     :  PolynomialCategory(R,E,OV)
    OV    :  OrderedSet
    E     :  OrderedAbelianMonoidSup
 
    SUPP      ==> SparseUnivariatePolynomial P
 
    C == with
      gcd               :   (P,P)    -> P
        ++ gcd(p,q) computes the gcd of the two polynomials p and q.
      gcd               :   List P   -> P
        ++ gcd(lp) computes the gcd of the list of polynomials lp.
      gcd               :   (SUPP,SUPP)    -> SUPP
        ++ gcd(p,q) computes the gcd of the two polynomials p and q.
      gcd               :   List SUPP   -> SUPP
        ++ gcd(lp) computes the gcd of the list of polynomials lp.
      gcdPrimitive      :   (P,P)    -> P
        ++ gcdPrimitive(p,q) computes the gcd of the primitive polynomials
        ++ p and q.
      gcdPrimitive      :   (SUPP,SUPP)    -> SUPP
        ++ gcdPrimitive(p,q) computes the gcd of the primitive polynomials
        ++ p and q.
      gcdPrimitive      :   List P   -> P
        ++ gcdPrimitive lp computes the gcd of the list of primitive
        ++ polynomials lp.

    T == add
 
      SUP      ==> SparseUnivariatePolynomial R
 
      LGcd     ==> Record(locgcd:SUPP,goodint:List List R)
      UTerm    ==> Record(lpol:List SUP,lint:List List R,mpol:SUPP)
      pmod:R   :=  (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R
 
      import MultivariateLifting(E,OV,R,P)
      import FactoringUtilities(E,OV,R,P)
 
                 --------  Local  Functions  --------
 
      myran           :    Integer   -> Union(R,"failed")
      better          :    (P,P)     -> Boolean
      failtest        :   (SUPP,SUPP,SUPP)    -> Boolean
      monomContent    :   (SUPP)   -> SUPP
      gcdMonom        :  (SUPP,SUPP)    -> SUPP
      gcdTermList     :    (P,P)     -> P
      good            :  (SUPP,List OV,List List R) -> Record(upol:SUP,inval:List List R)
 
      chooseVal       :  (SUPP,SUPP,List OV,List List R) -> Union(UTerm,"failed")
      localgcd        :  (SUPP,SUPP,List OV,List List R) -> LGcd
      notCoprime      :  (SUPP,SUPP, List NNI,List OV,List List R)   -> SUPP
      imposelc        : (List SUP,List OV,List R,List P) -> List SUP
 
      lift? :(SUPP,SUPP,UTerm,List NNI,List OV) -> Union(s:SUPP,failed:"failed",notCoprime:"notCoprime")
      lift  :(SUPP,SUP,SUP,P,List OV,List NNI,List R) -> Union(SUPP,"failed")
 
                     ---- Local  functions ----
    -- test if something wrong happened in the gcd
      failtest(f:SUPP,p1:SUPP,p2:SUPP) : Boolean ==
        (p1 exquo f) case "failed" or (p2 exquo f) case "failed"
 
    -- Choose the integers
      chooseVal(p1:SUPP,p2:SUPP,lvr:List OV,ltry:List List R):Union(UTerm,"failed") ==
        d1:=degree(p1)
        d2:=degree(p2)
        dd:NNI:=0$NNI
        nvr:NNI:=#lvr
        lval:List R :=[]
        range:I:=8
        repeat
          range:=2*range
          lval:=[ran(range) for i in 1..nvr]
          member?(lval,ltry) => "new point"
          ltry:=cons(lval,ltry)
          uf1:SUP:=completeEval(p1,lvr,lval)
          degree uf1 ~= d1 => "new point"
          uf2:SUP:= completeEval(p2,lvr,lval)
          degree uf2 ~= d2 => "new point"
          u:=gcd(uf1,uf2)
          du:=degree u
         --the univariate gcd is 1
          if du=0 then return [[1$SUP],ltry,0$SUPP]$UTerm
 
          ugcd:List SUP:=[u,(uf1 exquo u)::SUP,(uf2 exquo u)::SUP]
          uterm:=[ugcd,ltry,0$SUPP]$UTerm
          dd=0 => dd:=du
 
        --the degree is not changed
          du=dd =>
 
           --test if one of the polynomials is the gcd
            dd=d1 =>
              if not ((f:=p2 exquo p1) case "failed") then
                return [[u],ltry,p1]$UTerm
              if dd~=d2 then dd:=(dd-1)::NNI
 
            dd=d2 =>
              if not ((f:=p1 exquo p2) case "failed") then
                return [[u],ltry,p2]$UTerm
              dd:=(dd-1)::NNI
            return uterm
 
         --the new gcd has degree less
          du<dd => dd:=du
 
      good(f:SUPP,lvr:List OV,ltry:List List R):Record(upol:SUP,inval:List List R) ==
        nvr:NNI:=#lvr
        range:I:=1
        while true repeat
          range:=2*range
          lval:=[ran(range) for i in 1..nvr]
          member?(lval,ltry) => "new point"
          ltry:=cons(lval,ltry)
          uf:=completeEval(f,lvr,lval)
          if degree gcd(uf,differentiate uf)=0 then return [uf,ltry]
 
      -- impose the right lc
      imposelc(lipol:List SUP,
               lvar:List OV,lval:List R,leadc:List P):List SUP ==
        result:List SUP :=[]
        for pol in lipol for leadpol in leadc repeat
           p1:= univariate eval(leadpol,lvar,lval) * pol
           result:= cons((p1 exquo leadingCoefficient pol)::SUP,result)
        reverse result
 
    --Compute the gcd between not coprime polynomials
      notCoprime(g:SUPP,p2:SUPP,ldeg:List NNI,lvar1:List OV,ltry:List List R) : SUPP ==
        g1:=gcd(g,differentiate g)
        l1 := (g exquo g1)::SUPP
        lg:LGcd:=localgcd(l1,p2,lvar1,ltry)
        (l,ltry):=(lg.locgcd,lg.goodint)
        lval:=ltry.first
        p2l:=(p2 exquo l)::SUPP
        (gd1,gd2):=(l,l)
        ul:=completeEval(l,lvar1,lval)
        dl:=degree ul
        if degree gcd(ul,differentiate ul) ~=0 then
          newchoice:=good(l,lvar1,ltry)
          ul:=newchoice.upol
          ltry:=newchoice.inval
          lval:=ltry.first
        ug1:=completeEval(g1,lvar1,lval)
        ulist:=[ug1,completeEval(p2l,lvar1,lval)]
        lcpol:List P:=[leadingCoefficient g1, leadingCoefficient p2]
        while true repeat
          d:SUP:=gcd(cons(ul,ulist))
          if degree d =0 then return gd1
          lquo:=(ul exquo d)::SUP
          if degree lquo ~=0 then
            lgcd:=gcd(cons(leadingCoefficient l,lcpol))
            (gdl:=lift(l,d,lquo,lgcd,lvar1,ldeg,lval)) case "failed" =>
               return notCoprime(g,p2,ldeg,lvar1,ltry)
            l:=gd2:=gdl::SUPP
            ul:=completeEval(l,lvar1,lval)
            dl:=degree ul
          gd1:=gd1*gd2
          ulist:=[(uf exquo d)::SUP for uf in ulist]
 
      gcdPrimitive(p1:SUPP,p2:SUPP) : SUPP ==
        if (d1:=degree(p1)) > (d2:=degree(p2)) then
            (p1,p2):= (p2,p1)
            (d1,d2):= (d2,d1)
        degree p1 = 0 =>
            p1 = 0 => unitCanonical p2
            unitCanonical p1
        lvar:List OV:=sort(#1>#2,setUnion(variables p1,variables p2))
        empty? lvar =>
           raisePolynomial(gcd(lowerPolynomial p1,lowerPolynomial p2))
        (p2 exquo p1) case SUPP => unitCanonical p1
        ltry:List List R:=empty()
        totResult:=localgcd(p1,p2,lvar,ltry)
        result: SUPP:=totResult.locgcd
        -- special cases
        result=1 => 1$SUPP
<<bmtfix>>
        while failtest(result,p1,p2) repeat
--        SAY$Lisp  "retrying gcd"
          ltry:=totResult.goodint
          totResult:=localgcd(p1,p2,lvar,ltry)
          result:=totResult.locgcd
        result
 
    --local function for the gcd : it returns the evaluation point too
      localgcd(p1:SUPP,p2:SUPP,lvar:List(OV),ltry:List List R) : LGcd ==
        uterm:=chooseVal(p1,p2,lvar,ltry)::UTerm
        ltry:=uterm.lint
        listpol:= uterm.lpol
        ud:=listpol.first
        dd:= degree ud
 
        --the univariate gcd is 1
        dd=0 => [1$SUPP,ltry]$LGcd
 
        --one of the polynomials is the gcd
        dd=degree(p1) or dd=degree(p2) =>
                         [uterm.mpol,ltry]$LGcd
        ldeg:List NNI:=map(min,degree(p1,lvar),degree(p2,lvar))
 
       -- if there is a polynomial g s.t. g/gcd and gcd are coprime ...
        -- I can lift
        (h:=lift?(p1,p2,uterm,ldeg,lvar)) case notCoprime =>
          [notCoprime(p1,p2,ldeg,lvar,ltry),ltry]$LGcd
        h case failed => localgcd(p1,p2,lvar,ltry) -- skip bad values?
        [h.s,ltry]$LGcd
 
 
  -- content, internal functions return the poly if it is a monomial
      monomContent(p:SUPP):SUPP ==
        degree(p)=0 => 1
        md:= minimumDegree(p)
        monomial(gcd sort(better,coefficients p),md)
 
  -- Ordering for gcd purposes
      better(p1:P,p2:P):Boolean ==
        ground? p1 => true
        ground? p2 => false
        degree(p1,mainVariable(p1)::OV) < degree(p2,mainVariable(p2)::OV)
 
  -- Gcd between polynomial p1 and p2 with
  -- mainVariable p1 < x=mainVariable p2
      gcdTermList(p1:P,p2:P) : P ==
        termList:=sort(better,
           cons(p1,coefficients univariate(p2,(mainVariable p2)::OV)))
        q:P:=termList.first
        for term in termList.rest until q = 1$P repeat q:= gcd(q,term)
        q
 
  -- Gcd between polynomials with the same mainVariable
      gcd(p1:SUPP,p2:SUPP): SUPP ==
        if degree(p1) > degree(p2) then (p1,p2):= (p2,p1)
        degree p1 = 0 =>
           p1 = 0 => unitCanonical p2
           p1 = 1 => unitCanonical p1
           gcd(leadingCoefficient p1, content p2)::SUPP
        reductum(p1)=0 => gcdMonom(p1,monomContent p2)
        c1:= monomContent(p1)
        reductum(p2)=0 => gcdMonom(c1,p2)
        c2:= monomContent(p2)
        p1:= (p1 exquo c1)::SUPP
        p2:= (p2 exquo c2)::SUPP
        gcdPrimitive(p1,p2) * gcdMonom(c1,c2)
 
   -- gcd between 2 monomials
      gcdMonom(m1:SUPP,m2:SUPP):SUPP ==
        monomial(gcd(leadingCoefficient(m1),leadingCoefficient(m2)),
                 min(degree(m1),degree(m2)))

 
    --If there is a pol s.t. pol/gcd and gcd are coprime I can lift
      lift?(p1:SUPP,p2:SUPP,uterm:UTerm,ldeg:List NNI,
                     lvar:List OV) : Union(s:SUPP,failed:"failed",notCoprime:"notCoprime") ==
        leadpol:Boolean:=false
        (listpol,lval):=(uterm.lpol,uterm.lint.first)
        d:=listpol.first
        listpol:=listpol.rest
        nolift:Boolean:=true
        uf: SUP
        for uf in listpol repeat
              --note uf and d not necessarily primitive
          degree gcd(uf,d) =0 => nolift:=false
        nolift => ["notCoprime"]
        f:SUPP:=([p1,p2]$List(SUPP)).(position(uf,listpol))
        lgcd:=gcd(leadingCoefficient p1, leadingCoefficient p2)
        (l:=lift(f,d,uf,lgcd,lvar,ldeg,lval)) case "failed" => ["failed"]
        [l :: SUPP]
 
   -- interface with the general "lifting" function
      lift(f:SUPP,d:SUP,uf:SUP,lgcd:P,lvar:List OV,
                        ldeg:List NNI,lval:List R):Union(SUPP,"failed") ==
        leadpol:Boolean:=false
        lcf:P
        lcf:=leadingCoefficient f
        df:=degree f
        leadlist:List(P):=[]
 
        if lgcd~=1 then
          leadpol:=true
          f:=lgcd*f
          ldeg:=[n0+n1 for n0 in ldeg for n1 in degree(lgcd,lvar)]
          lcd:R:=leadingCoefficient d
          if degree(lgcd)=0 then d:=((retract lgcd) *d exquo lcd)::SUP
          else d:=(retract(eval(lgcd,lvar,lval)) * d exquo lcd)::SUP
          uf:=lcd*uf
        leadlist:=[lgcd,lcf]
        lg:=imposelc([d,uf],lvar,lval,leadlist)
        (pl:=lifting(f,lvar,lg,lval,leadlist,ldeg,pmod)) case "failed" =>
               "failed"
        plist := pl :: List SUPP
        (p0:SUPP,p1:SUPP):=(plist.first,plist.2)
        if completeEval(p0,lvar,lval) ~= lg.first then
           (p0,p1):=(p1,p0)
        not leadpol => p0
        p0 exquo content(p0)
 
  -- Gcd for two multivariate polynomials
      gcd(p1:P,p2:P) : P ==
        ground? p1 =>
          p1 := unitCanonical p1
          p1 = 1$P => p1
          p1 = 0$P => unitCanonical p2
          ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
          gcdTermList(p1,p2)
        ground? p2 =>
          p2 := unitCanonical p2
          p2 = 1$P => p2
          p2 = 0$P => unitCanonical p1
          gcdTermList(p2,p1)
        (p1:= unitCanonical(p1)) = (p2:= unitCanonical(p2)) => p1
        mv1:= mainVariable(p1)::OV
        mv2:= mainVariable(p2)::OV
        mv1 = mv2 => multivariate(gcd(univariate(p1,mv1),
                                      univariate(p2,mv1)),mv1)
        mv1 < mv2 => gcdTermList(p1,p2)
        gcdTermList(p2,p1)
 
  -- Gcd for a list of multivariate polynomials
      gcd(listp:List P) : P ==
        lf:=sort(better,listp)
        f:=lf.first
        for g in lf.rest repeat
          f:=gcd(f,g)
          if f=1$P then return f
        f

      gcd(listp:List SUPP) : SUPP ==
        lf:=sort(degree(#1)<degree(#2),listp)
        f:=lf.first
        for g in lf.rest repeat
          f:=gcd(f,g)
          if f=1 then return f
        f

 
   -- Gcd for primitive polynomials
      gcdPrimitive(p1:P,p2:P):P ==
        (p1:= unitCanonical(p1)) = (p2:= unitCanonical(p2)) => p1
        ground? p1 =>
          ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
          p1 = 0$P => p2
          1$P
        ground? p2 =>
          p2 = 0$P => p1
          1$P
        mv1:= mainVariable(p1)::OV
        mv2:= mainVariable(p2)::OV
        mv1 = mv2 =>
          md:=min(minimumDegree(p1,mv1),minimumDegree(p2,mv2))
          mp:=1$P
          if md>1 then
            mp:=(mv1::P)**md
            p1:=(p1 exquo mp)::P
            p2:=(p2 exquo mp)::P
          up1 := univariate(p1,mv1)
          up2 := univariate(p2,mv2)
          mp*multivariate(gcdPrimitive(up1,up2),mv1)
        1$P
 
  -- Gcd for a list of primitive multivariate polynomials
      gcdPrimitive(listp:List P) : P ==
        lf:=sort(better,listp)
        f:=lf.first
        for g in lf.rest repeat
          f:=gcdPrimitive(f,g)
          if f=1$P then return f
        f

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<package PGCD PolynomialGcdPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}