\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra pfbr.spad} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package PFBRU PolynomialFactorizationByRecursionUnivariate} <<package PFBRU PolynomialFactorizationByRecursionUnivariate>>= )abbrev package PFBRU PolynomialFactorizationByRecursionUnivariate ++ PolynomialFactorizationByRecursionUnivariate ++ R is a \spadfun{PolynomialFactorizationExplicit} domain, ++ S is univariate polynomials over R ++ We are interested in handling SparseUnivariatePolynomials over ++ S, is a variable we shall call z PolynomialFactorizationByRecursionUnivariate(R, S): public == private where R:PolynomialFactorizationExplicit S:UnivariatePolynomialCategory(R) PI ==> PositiveInteger SupR ==> SparseUnivariatePolynomial R SupSupR ==> SparseUnivariatePolynomial SupR SupS ==> SparseUnivariatePolynomial S SupSupS ==> SparseUnivariatePolynomial SupS LPEBFS ==> LinearPolynomialEquationByFractions(S) public == with solveLinearPolynomialEquationByRecursion: (List SupS, SupS) -> Union(List SupS,"failed") ++ \spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} ++ returns the list of polynomials \spad{[q1,...,qn]} ++ such that \spad{sum qi/pi = p / prod pi}, a ++ recursion step for solveLinearPolynomialEquation ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{solveLinearPolynomialEquation}). ++ If no such list of qi exists, then "failed" is returned. factorByRecursion: SupS -> Factored SupS ++ factorByRecursion(p) factors polynomial p. This function ++ performs the recursion step for factorPolynomial, ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{factorPolynomial}) factorSquareFreeByRecursion: SupS -> Factored SupS ++ factorSquareFreeByRecursion(p) returns the square free ++ factorization of p. This functions performs ++ the recursion step for factorSquareFreePolynomial, ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{factorSquareFreePolynomial}). randomR: -> R -- has to be global, since has alternative definitions ++ randomR() produces a random element of R factorSFBRlcUnit: (SupS) -> Factored SupS ++ factorSFBRlcUnit(p) returns the square free factorization of ++ polynomial p ++ (see \spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) ++ in the case where the leading coefficient of p ++ is a unit. private == add supR: SparseUnivariatePolynomial R pp: SupS lpolys,factors: List SupS r:R lr:List R import FactoredFunctionUtilities(SupS) import FactoredFunctions2(SupR,SupS) import FactoredFunctions2(S,SupS) import UnivariatePolynomialCategoryFunctions2(S,SupS,R,SupR) import UnivariatePolynomialCategoryFunctions2(R,SupR,S,SupS) -- local function declarations raise: SupR -> SupS lower: SupS -> SupR factorSFBRlcUnitInner: (SupS,R) -> Union(Factored SupS,"failed") hensel: (SupS,R,List SupS) -> Union(Record(fctrs:List SupS),"failed") chooseFSQViableSubstitutions: (SupS) -> Record(substnsField:R,ppRField:SupR) --++ chooseFSQViableSubstitutions(p), p is a sup --++ ("sparse univariate polynomial") --++ over a sup over R, returns a record --++ \spad{[substnsField: r, ppRField: q]} where r is a substitution point --++ q is a sup over R so that the (implicit) variable in q --++ does not drop in degree and remains square-free. -- here for the moment, until it compiles -- N.B., we know that R is NOT a FiniteField, since -- that is meant to have a special implementation, to break the -- recursion solveLinearPolynomialEquationByRecursion(lpolys,pp) == lhsdeg:="max"/["max"/[degree v for v in coefficients u] for u in lpolys] rhsdeg:="max"/[degree v for v in coefficients pp] lhsdeg = 0 => lpolysLower:=[lower u for u in lpolys] answer:List SupS := [0 for u in lpolys] for i in 0..rhsdeg repeat ppx:=map(coefficient(#1,i),pp) zero? ppx => "next" recAns:= solveLinearPolynomialEquation(lpolysLower,ppx) recAns case "failed" => return "failed" answer:=[monomial(1,i)$S * raise c + d for c in recAns for d in answer] answer solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS -- local function definitions hensel(pp,r,factors) == -- factors is a relatively prime factorization of pp modulo the ideal -- (x-r), with suitably imposed leading coefficients. -- This is lifted, without re-combinations, to a factorization -- return "failed" if this can't be done origFactors:=factors totdegree:Integer:=0 proddegree:Integer:= "max"/[degree(u) for u in coefficients pp] n:PI:=1 pn:=prime:=monomial(1,1) - r::S foundFactors:List SupS:=empty() while (totdegree <= proddegree) repeat Ecart:=(pp-*/factors) exquo pn Ecart case "failed" => error "failed lifting in hensel in PFBRU" zero? Ecart => -- then we have all the factors return [append(foundFactors, factors)] step:=solveLinearPolynomialEquation(origFactors, map(elt(#1,r::S), Ecart)) step case "failed" => return "failed" -- must be a false split factors:=[a+b*pn for a in factors for b in step] for a in factors for c in origFactors repeat pp1:= pp exquo a pp1 case "failed" => "next" pp:=pp1 proddegree := proddegree - "max"/[degree(u) for u in coefficients a] factors:=remove(a,factors) origFactors:=remove(c,origFactors) foundFactors:=[a,:foundFactors] #factors < 2 => return [(empty? factors => foundFactors; [pp,:foundFactors])] totdegree:= +/["max"/[degree(u) for u in coefficients u1] for u1 in factors] n:=n+1 pn:=pn*prime "failed" -- must have been a false split chooseFSQViableSubstitutions(pp) == substns:R ppR: SupR while true repeat substns:= randomR() zero? elt(leadingCoefficient pp,substns ) => "next" ppR:=map( elt(#1,substns),pp) positive? degree gcd(ppR,differentiate ppR) => "next" leave [substns,ppR] raise(supR) == map(#1:R::S,supR) lower(pp) == map(retract(#1)::R,pp) factorSFBRlcUnitInner(pp,r) == -- pp is square-free as a Sup, but the Up variable occurs. -- Furthermore, its LC is a unit -- returns "failed" if the substitution is bad, else a factorization ppR:=map(elt(#1,r),pp) degree ppR < degree pp => "failed" positive? degree gcd(ppR,differentiate ppR) => "failed" factors:= fDown:=factorSquareFreePolynomial ppR [raise (unit fDown * factorList(fDown).first.fctr), :[raise u.fctr for u in factorList(fDown).rest]] #factors = 1 => makeFR(1,[["irred",pp,1]]) hen:=hensel(pp,r,factors) hen case "failed" => "failed" makeFR(1,[["irred",u,1] for u in hen.fctrs]) -- exported function definitions if R has StepThrough then factorSFBRlcUnit(pp) == val:R := init() while true repeat tempAns:=factorSFBRlcUnitInner(pp,val) not (tempAns case "failed") => return tempAns val1 := nextItem val val1 case nothing => error "at this point, we know we have a finite field" val := val1 else factorSFBRlcUnit(pp) == val:R := randomR() while true repeat tempAns:=factorSFBRlcUnitInner(pp,val) not (tempAns case "failed") => return tempAns val := randomR() if R has StepThrough then randomCount:R:= init() randomR() == v:=nextItem(randomCount) v case nothing => SAY$Lisp "Taking another set of random values" randomCount:=init() randomCount randomCount:=v randomCount else if R has random: -> R then randomR() == random() else randomR() == (random()$Integer rem 100)::R factorByRecursion pp == and/[zero? degree u for u in coefficients pp] => map(raise,factorPolynomial lower pp) c:=content pp unit? c => refine(squareFree pp,factorSquareFreeByRecursion) pp:=(pp exquo c)::SupS mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion), map(#1:S::SupS,factor(c)$S)) factorSquareFreeByRecursion pp == and/[zero? degree u for u in coefficients pp] => map(raise,factorSquareFreePolynomial lower pp) unit? (lcpp := leadingCoefficient pp) => factorSFBRlcUnit(pp) oldnfact:NonNegativeInteger:= 999999 -- I hope we never have to factor a polynomial -- with more than this number of factors lcppPow:S while true repeat -- a loop over possible false splits cVS:=chooseFSQViableSubstitutions(pp) newppR:=primitivePart cVS.ppRField factorsR:=factorSquareFreePolynomial(newppR) (nfact:=numberOfFactors factorsR) = 1 => return makeFR(1,[["irred",pp,1]]) -- OK, force all leading coefficients to be equal to the leading -- coefficient of the input nfact > oldnfact => "next" -- can't be a good reduction oldnfact:=nfact lcppR:=leadingCoefficient cVS.ppRField factors:=[raise((lcppR exquo leadingCoefficient u.fctr) ::R * u.fctr) for u in factorList factorsR] -- factors now multiplies to give cVS.ppRField * lcppR^(#factors-1) -- Now change the leading coefficient to be lcpp factors:=[monomial(lcpp,degree u) + reductum u for u in factors] -- factors:=[(lcpp exquo leadingCoefficient u.fctr)::S * raise u.fctr -- for u in factorList factorsR] ppAdjust:=(lcppPow:=lcpp**#(rest factors)) * pp OK:=true hen:=hensel(ppAdjust,cVS.substnsField,factors) hen case "failed" => "next" factors:=hen.fctrs leave factors:=[ (lc:=content w; lcppPow:=(lcppPow exquo lc)::S; (w exquo lc)::SupS) for w in factors] not unit? lcppPow => error "internal error in factorSquareFreeByRecursion" makeFR((recip lcppPow)::S::SupS, [["irred",w,1] for w in factors]) @ \section{package PFBR PolynomialFactorizationByRecursion} <<package PFBR PolynomialFactorizationByRecursion>>= )abbrev package PFBR PolynomialFactorizationByRecursion ++ Description: PolynomialFactorizationByRecursion(R,E,VarSet,S) ++ is used for factorization of sparse univariate polynomials over ++ a domain S of multivariate polynomials over R. PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == private where R:PolynomialFactorizationExplicit E:OrderedAbelianMonoidSup S:PolynomialCategory(R,E,VarSet) PI ==> PositiveInteger SupR ==> SparseUnivariatePolynomial R SupSupR ==> SparseUnivariatePolynomial SupR SupS ==> SparseUnivariatePolynomial S SupSupS ==> SparseUnivariatePolynomial SupS LPEBFS ==> LinearPolynomialEquationByFractions(S) public == with solveLinearPolynomialEquationByRecursion: (List SupS, SupS) -> Union(List SupS,"failed") ++ \spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} ++ returns the list of polynomials \spad{[q1,...,qn]} ++ such that \spad{sum qi/pi = p / prod pi}, a ++ recursion step for solveLinearPolynomialEquation ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{solveLinearPolynomialEquation}). ++ If no such list of qi exists, then "failed" is returned. factorByRecursion: SupS -> Factored SupS ++ factorByRecursion(p) factors polynomial p. This function ++ performs the recursion step for factorPolynomial, ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{factorPolynomial}) factorSquareFreeByRecursion: SupS -> Factored SupS ++ factorSquareFreeByRecursion(p) returns the square free ++ factorization of p. This functions performs ++ the recursion step for factorSquareFreePolynomial, ++ as defined in \spadfun{PolynomialFactorizationExplicit} category ++ (see \spadfun{factorSquareFreePolynomial}). randomR: -> R -- has to be global, since has alternative definitions ++ randomR produces a random element of R bivariateSLPEBR: (List SupS, SupS, VarSet) -> Union(List SupS,"failed") ++ bivariateSLPEBR(lp,p,v) implements ++ the bivariate case of ++ \spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; ++ its implementation depends on R factorSFBRlcUnit: (List VarSet, SupS) -> Factored SupS ++ factorSFBRlcUnit(p) returns the square free factorization of ++ polynomial p ++ (see \spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) ++ in the case where the leading coefficient of p ++ is a unit. private == add supR: SparseUnivariatePolynomial R pp: SupS lpolys,factors: List SupS vv:VarSet lvpolys,lvpp: List VarSet r:R lr:List R import FactoredFunctionUtilities(SupS) import FactoredFunctions2(S,SupS) import FactoredFunctions2(SupR,SupS) import CommuteUnivariatePolynomialCategory(S,SupS, SupSupS) import UnivariatePolynomialCategoryFunctions2(S,SupS,SupS,SupSupS) import UnivariatePolynomialCategoryFunctions2(SupS,SupSupS,S,SupS) import UnivariatePolynomialCategoryFunctions2(S,SupS,R,SupR) import UnivariatePolynomialCategoryFunctions2(R,SupR,S,SupS) import UnivariatePolynomialCategoryFunctions2(S,SupS,SupR,SupSupR) import UnivariatePolynomialCategoryFunctions2(SupR,SupSupR,S,SupS) hensel: (SupS,VarSet,R,List SupS) -> Union(Record(fctrs:List SupS),"failed") chooseSLPEViableSubstitutions: (List VarSet,List SupS,SupS) -> Record(substnsField:List R,lpolysRField:List SupR,ppRField:SupR) --++ chooseSLPEViableSubstitutions(lv,lp,p) chooses substitutions --++ for the variables in first arg (which are all --++ the variables that exist) so that the polys in second argument don't --++ drop in degree and remain square-free, and third arg doesn't drop --++ drop in degree chooseFSQViableSubstitutions: (List VarSet,SupS) -> Record(substnsField:List R,ppRField:SupR) --++ chooseFSQViableSubstitutions(lv,p) chooses substitutions for the variables in first arg (which are all --++ the variables that exist) so that the second argument poly doesn't --++ drop in degree and remains square-free raise: SupR -> SupS lower: SupS -> SupR SLPEBR: (List SupS, List VarSet, SupS, List VarSet) -> Union(List SupS,"failed") factorSFBRlcUnitInner: (List VarSet, SupS,R) -> Union(Factored SupS,"failed") hensel(pp,vv,r,factors) == origFactors:=factors totdegree:Integer:=0 proddegree:Integer:= "max"/[degree(u,vv) for u in coefficients pp] n:PI:=1 prime:=vv::S - r::S foundFactors:List SupS:=empty() while (totdegree <= proddegree) repeat pn:=prime**n Ecart:=(pp-*/factors) exquo pn Ecart case "failed" => error "failed lifting in hensel in PFBR" zero? Ecart => -- then we have all the factors return [append(foundFactors, factors)] step:=solveLinearPolynomialEquation(origFactors, map(eval(#1,vv,r), Ecart)) step case "failed" => return "failed" -- must be a false split factors:=[a+b*pn for a in factors for b in step] for a in factors for c in origFactors repeat pp1:= pp exquo a pp1 case "failed" => "next" pp:=pp1 proddegree := proddegree - "max"/[degree(u,vv) for u in coefficients a] factors:=remove(a,factors) origFactors:=remove(c,origFactors) foundFactors:=[a,:foundFactors] #factors < 2 => return [(empty? factors => foundFactors; [pp,:foundFactors])] totdegree:= +/["max"/[degree(u,vv) for u in coefficients u1] for u1 in factors] n:=n+1 "failed" -- must have been a false split factorSFBRlcUnitInner(lvpp,pp,r) == -- pp is square-free as a Sup, and its coefficients have precisely -- the variables of lvpp. Furthermore, its LC is a unit -- returns "failed" if the substitution is bad, else a factorization ppR:=map(eval(#1,first lvpp,r),pp) degree ppR < degree pp => "failed" positive? degree gcd(ppR,differentiate ppR) => "failed" factors:= empty? rest lvpp => fDown:=factorSquareFreePolynomial map(retract(#1)::R,ppR) [raise (unit fDown * factorList(fDown).first.fctr), :[raise u.fctr for u in factorList(fDown).rest]] fSame:=factorSFBRlcUnit(rest lvpp,ppR) [unit fSame * factorList(fSame).first.fctr, :[uu.fctr for uu in factorList(fSame).rest]] #factors = 1 => makeFR(1,[["irred",pp,1]]) hen:=hensel(pp,first lvpp,r,factors) hen case "failed" => "failed" makeFR(1,[["irred",u,1] for u in hen.fctrs]) if R has StepThrough then factorSFBRlcUnit(lvpp,pp) == val:R := init() while true repeat tempAns:=factorSFBRlcUnitInner(lvpp,pp,val) not (tempAns case "failed") => return tempAns val1:=nextItem val val1 case nothing => error "at this point, we know we have a finite field" val:=val1 else factorSFBRlcUnit(lvpp,pp) == val:R := randomR() while true repeat tempAns:=factorSFBRlcUnitInner(lvpp,pp,val) not (tempAns case "failed") => return tempAns val := randomR() if R has random: -> R then randomR() == random() else randomR() == (random()$Integer)::R if R has FiniteFieldCategory then bivariateSLPEBR(lpolys,pp,v) == lpolysR:List SupSupR:=[map(univariate,u) for u in lpolys] ppR: SupSupR:=map(univariate,pp) ans:=solveLinearPolynomialEquation(lpolysR,ppR)$SupR ans case "failed" => "failed" [map(multivariate(#1,v),w) for w in ans] else bivariateSLPEBR(lpolys,pp,v) == solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS chooseFSQViableSubstitutions(lvpp,pp) == substns:List R ppR: SupR while true repeat substns:= [randomR() for v in lvpp] zero? eval(leadingCoefficient pp,lvpp,substns ) => "next" ppR:=map((retract eval(#1,lvpp,substns))::R,pp) positive? degree gcd(ppR,differentiate ppR) => "next" leave [substns,ppR] chooseSLPEViableSubstitutions(lvpolys,lpolys,pp) == substns:List R lpolysR:List SupR ppR: SupR while true repeat substns:= [randomR() for v in lvpolys] zero? eval(leadingCoefficient pp,lvpolys,substns ) => "next" "or"/[zero? eval(leadingCoefficient u,lvpolys,substns) for u in lpolys] => "next" lpolysR:=[map((retract eval(#1,lvpolys,substns))::R,u) for u in lpolys] uu:=lpolysR while not empty? uu repeat "or"/[positive? degree(gcd(uu.first,v)) for v in uu.rest] => leave uu:=rest uu not empty? uu => "next" leave ppR:=map((retract eval(#1,lvpolys,substns))::R,pp) [substns,lpolysR,ppR] raise(supR) == map(#1:R::S,supR) lower(pp) == map(retract(#1)::R,pp) SLPEBR(lpolys,lvpolys,pp,lvpp) == not empty? (m:=setDifference(lvpp,lvpolys)) => v:=first m lvpp:=remove(v,lvpp) pp1:SupSupS :=swap map(univariate(#1,v),pp) -- pp1 is mathematically equal to pp, but is in S[z][v] -- so we wish to operate on all of its coefficients ans:List SupSupS:= [0 for u in lpolys] for m: local in reverse! monomials pp1 repeat ans1:=SLPEBR(lpolys,lvpolys,leadingCoefficient m,lvpp) ans1 case "failed" => return "failed" d:=degree m ans:=[monomial(a1,d)+a for a in ans for a1 in ans1] [map(multivariate(#1,v),swap pp1) for pp1 in ans] empty? lvpolys => lpolysR:List SupR ppR:SupR lpolysR:=[map(retract,u) for u in lpolys] ppR:=map(retract,pp) ansR:=solveLinearPolynomialEquation(lpolysR,ppR) ansR case "failed" => return "failed" [map(#1::S,uu) for uu in ansR] cVS:=chooseSLPEViableSubstitutions(lvpolys,lpolys,pp) ansR:=solveLinearPolynomialEquation(cVS.lpolysRField,cVS.ppRField) ansR case "failed" => "failed" #lvpolys = 1 => bivariateSLPEBR(lpolys,pp, first lvpolys) solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS solveLinearPolynomialEquationByRecursion(lpolys,pp) == lvpolys := removeDuplicates! concat [ concat [variables z for z in coefficients u] for u in lpolys] lvpp := removeDuplicates! concat [variables z for z in coefficients pp] SLPEBR(lpolys,lvpolys,pp,lvpp) factorByRecursion pp == lv:List(VarSet) := removeDuplicates! concat [variables z for z in coefficients pp] empty? lv => map(raise,factorPolynomial lower pp) c:=content pp unit? c => refine(squareFree pp,factorSquareFreeByRecursion) pp:=(pp exquo c)::SupS mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion), map(#1:S::SupS,factor(c)$S)) factorSquareFreeByRecursion pp == lv:List(VarSet) := removeDuplicates! concat [variables z for z in coefficients pp] empty? lv => map(raise,factorPolynomial lower pp) unit? (lcpp := leadingCoefficient pp) => factorSFBRlcUnit(lv,pp) oldnfact:NonNegativeInteger:= 999999 -- I hope we never have to factor a polynomial -- with more than this number of factors lcppPow:S while true repeat cVS:=chooseFSQViableSubstitutions(lv,pp) factorsR:=factorSquareFreePolynomial(cVS.ppRField) (nfact:=numberOfFactors factorsR) = 1 => return makeFR(1,[["irred",pp,1]]) -- OK, force all leading coefficients to be equal to the leading -- coefficient of the input nfact > oldnfact => "next" -- can't be a good reduction oldnfact:=nfact factors:=[(lcpp exquo leadingCoefficient u.fctr)::S * raise u.fctr for u in factorList factorsR] ppAdjust:=(lcppPow:=lcpp**#(rest factors)) * pp lvppList:=lv OK:=true for u in lvppList for v in cVS.substnsField repeat hen:=hensel(ppAdjust,u,v,factors) hen case "failed" => OK:=false "leave" factors:=hen.fctrs OK => leave factors:=[ (lc:=content w; lcppPow:=(lcppPow exquo lc)::S; (w exquo lc)::SupS) for w in factors] not unit? lcppPow => error "internal error in factorSquareFreeByRecursion" makeFR((recip lcppPow)::S::SupS, [["irred",w,1] for w in factors]) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package PFBRU PolynomialFactorizationByRecursionUnivariate>> <<package PFBR PolynomialFactorizationByRecursion>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}