\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra pf.spad} \author{N.N., Johannes Grabmeier, Alfred Scheerhorn} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain IPF InnerPrimeField} <<domain IPF InnerPrimeField>>= )abbrev domain IPF InnerPrimeField -- Argument MUST be a prime. -- This domain does not check, PrimeField does. ++ Authors: N.N., J.Grabmeier, A.Scheerhorn ++ Date Created: ?, November 1990, 26.03.1991 ++ Date Last Updated: May 29, 2009 ++ Basic Operations: ++ Related Constructors: PrimeField ++ Also See: ++ AMS Classifications: ++ Keywords: prime characteristic, prime field, finite field ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ AXIOM Technical Report Series, to appear. ++ Description: ++ InnerPrimeField(p) implements the field with p elements. ++ Note: argument p MUST be a prime (this domain does not check). ++ See \spadtype{PrimeField} for a domain that does check. InnerPrimeField(p:PositiveInteger): Exports == Implementation where I ==> Integer NNI ==> NonNegativeInteger PI ==> PositiveInteger TBL ==> Table(PI,NNI) R ==> Record(key:PI,entry:NNI) SUP ==> SparseUnivariatePolynomial OUT ==> OutputForm Exports ==> Join(FiniteFieldCategory,FiniteAlgebraicExtensionField($),_ ConvertibleTo(Integer)) Implementation ==> IntegerMod p add initializeElt:() -> Void initializeLog:() -> Void -- global variables ==================================================== primitiveElt:PI:=1 -- for the lookup the primitive Element computed by createPrimitiveElement() sizeCG :=(p-1) pretend NonNegativeInteger -- the size of the cyclic group facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer)) -- the factorization of the cyclic group size initlog?:Boolean:=true -- gets false after initialization of the logarithm table initelt?:Boolean:=true -- gets false after initialization of the primitive Element discLogTable:Table(PI,TBL):=table()$Table(PI,TBL) -- tables indexed by the factors of the size q of the cyclic group -- discLogTable.factor is a table of with keys -- primitiveElement() ** (i * (q quo factor)) and entries i for -- i in 0..n-1, n computed in initialize() in order to use -- the minimal size limit 'limit' optimal. -- functions =========================================================== generator() == 1 -- This uses x**(p-1)=1 (mod p), so x**(q(p-1)+r) = x**r (mod p) x:$ ** n:Integer == zero?(n) => 1 zero?(x) => 0 r := positiveRemainder(n,p-1)::NNI per (rep(x) **$IntegerMod(p) r) if p <= convert(max()$SingleInteger)@Integer then q := p::SingleInteger recip x == zero?(y := convert(x)@Integer :: SingleInteger) => "failed" invmod(y, q)::Integer::$ else recip x == zero?(y := convert(x)@Integer) => "failed" invmod(y, p)::$ convert(x:$) == x pretend I normalElement() == 1 createNormalElement() == 1 characteristic == p factorsOfCyclicGroupSize() == p=2 => facOfGroupSize -- this fixes an infinite loop of functions -- calls, problem was that factors factor(1) -- is the empty list if empty? facOfGroupSize then initializeElt() facOfGroupSize representationType() == "prime" tableForDiscreteLogarithm(fac) == if initlog? then initializeLog() tbl:=search(fac::PI,discLogTable)$Table(PI,TBL) tbl case "failed" => error "tableForDiscreteLogarithm: argument must be prime divisor_ of the order of the multiplicative group" tbl :: TBL primitiveElement() == if initelt? then initializeElt() index(primitiveElt) initializeElt() == facOfGroupSize:=factors(factor(sizeCG)$I)$(Factored I) -- get a primitive element primitiveElt:=lookup(createPrimitiveElement()) -- set initialization flag initelt? := false initializeLog() == if initelt? then initializeElt() -- set up tables for discrete logarithm limit:Integer:=30 -- the minimum size for the discrete logarithm table for f in facOfGroupSize repeat fac:=f.factor base:$:=primitiveElement() ** (sizeCG quo fac) l:Integer:=length(fac)$Integer n:Integer:=0 if odd?(l)$Integer then n:=shift(fac,-(l quo 2)) else n:=shift(1,(l quo 2)) if n < limit then d:=(fac-1) quo limit + 1 n:=(fac-1) quo d + 1 tbl:TBL:=table()$TBL a:$:=1 for i in (0::NNI)..(n-1)::NNI repeat insert!([lookup(a),i::NNI]$R,tbl)$TBL a:=a*base insert!([fac::PI,copy(tbl)$TBL]_ $Record(key:PI,entry:TBL),discLogTable)$Table(PI,TBL) -- tell user about initialization -- print("discrete logarithm table initialized"::OUT) -- set initialization flag initlog? := false degree(x):PI == 1::PositiveInteger extensionDegree():PI == 1::PositiveInteger -- sizeOfGroundField() == p::NonNegativeInteger inGroundField?(x) == true coordinates(x: %) == new(1,x)$(Vector $) represents(v) == v.1 retract(x) == x retractIfCan(x) == x basis() == new(1,1::$)$(Vector $) basis(n:PI) == n = 1 => basis() error("basis: argument must divide extension degree") definingPolynomial() == monomial(1,1)$(SUP $) - monomial(1,0)$(SUP $) minimalPolynomial(x) == monomial(1,1)$(SUP $) - monomial(x,0)$(SUP $) charthRoot(x: %): % == x before?(x,y) == before?(convert x, convert y)$I @ \section{domain PF PrimeField} <<domain PF PrimeField>>= )abbrev domain PF PrimeField ++ Authors: N.N., ++ Date Created: November 1990, 26.03.1991 ++ Date Last Updated: 31 March 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: prime characteristic, prime field, finite field ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ Description: ++ PrimeField(p) implements the field with p elements if p is a ++ prime number. ++ Error: if p is not prime. ++ Note: this domain does not check that argument is a prime. --++ with new compiler, want to put the error check before the add PrimeField(p:PositiveInteger): Exp == Impl where Exp ==> Join(FiniteFieldCategory,FiniteAlgebraicExtensionField($),_ ConvertibleTo(Integer)) Impl ==> InnerPrimeField(p) add if not prime?(p)$IntegerPrimesPackage(Integer) then error "Argument to prime field must be a prime" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain IPF InnerPrimeField>> <<domain PF PrimeField>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}