\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra permgrps.spad} \author{Gerhard Schneider, Holger Gollan, Johannes Grabmeier, M. Weller} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain PERMGRP PermutationGroup} <<domain PERMGRP PermutationGroup>>= )abbrev domain PERMGRP PermutationGroup ++ Authors: G. Schneider, H. Gollan, J. Grabmeier ++ Date Created: 13 February 1987 ++ Date Last Updated: 24 May 1991 ++ Basic Operations: ++ Related Constructors: PermutationGroupExamples, Permutation ++ Also See: RepresentationTheoryPackage1 ++ AMS Classifications: ++ Keywords: permutation, permutation group, group operation, word problem ++ References: ++ C. Sims: Determining the conjugacy classes of a permutation group, ++ in Computers in Algebra and Number Theory, SIAM-AMS Proc., Vol. 4, ++ Amer. Math. Soc., Providence, R. I., 1971, pp. 191-195 ++ Description: ++ PermutationGroup implements permutation groups acting ++ on a set S, i.e. all subgroups of the symmetric group of S, ++ represented as a list of permutations (generators). Note that ++ therefore the objects are not members of the \Language category ++ \spadtype{Group}. ++ Using the idea of base and strong generators by Sims, ++ basic routines and algorithms ++ are implemented so that the word problem for ++ permutation groups can be solved. --++ Note: we plan to implement lattice operations on the subgroup --++ lattice in a later release PermutationGroup(S:SetCategory): public == private where L ==> List PERM ==> Permutation FSET ==> Set I ==> Integer NNI ==> NonNegativeInteger V ==> Vector B ==> Boolean OUT ==> OutputForm SYM ==> Symbol REC ==> Record ( orb : L NNI , svc : V I ) REC2 ==> Record(order:NNI,sgset:L V NNI,_ gpbase:L NNI,orbs:L REC,mp:L S,wd:L L NNI) REC3 ==> Record(elt:V NNI,lst:L NNI) REC4 ==> Record(bool:B,lst:L NNI) public ==> SetCategory with coerce : % -> L PERM S ++ coerce(gp) returns the generators of the group {\em gp}. generators : % -> L PERM S ++ generators(gp) returns the generators of the group {\em gp}. elt : (%,NNI) -> PERM S ++ elt(gp,i) returns the i-th generator of the group {\em gp}. random : (%,I) -> PERM S ++ random(gp,i) returns a random product of maximal i generators ++ of the group {\em gp}. random : % -> PERM S ++ random(gp) returns a random product of maximal 20 generators ++ of the group {\em gp}. ++ Note: {\em random(gp)=random(gp,20)}. order : % -> NNI ++ order(gp) returns the order of the group {\em gp}. degree : % -> NNI ++ degree(gp) returns the number of points moved by all permutations ++ of the group {\em gp}. base : % -> L S ++ base(gp) returns a base for the group {\em gp}. strongGenerators : % -> L PERM S ++ strongGenerators(gp) returns strong generators for ++ the group {\em gp}. wordsForStrongGenerators : % -> L L NNI ++ wordsForStrongGenerators(gp) returns the words for the strong ++ generators of the group {\em gp} in the original generators of ++ {\em gp}, represented by their indices in the list, given by ++ {\em generators}. coerce : L PERM S -> % ++ coerce(ls) coerces a list of permutations {\em ls} to the group ++ generated by this list. permutationGroup : L PERM S -> % ++ permutationGroup(ls) coerces a list of permutations {\em ls} to ++ the group generated by this list. orbit : (%,S) -> FSET S ++ orbit(gp,el) returns the orbit of the element {\em el} under the ++ group {\em gp}, i.e. the set of all points gained by applying ++ each group element to {\em el}. orbits : % -> FSET FSET S ++ orbits(gp) returns the orbits of the group {\em gp}, i.e. ++ it partitions the (finite) of all moved points. orbit : (%,FSET S)-> FSET FSET S ++ orbit(gp,els) returns the orbit of the unordered ++ set {\em els} under the group {\em gp}. orbit : (%,L S) -> FSET L S ++ orbit(gp,ls) returns the orbit of the ordered ++ list {\em ls} under the group {\em gp}. ++ Note: return type is L L S temporarily because FSET L S has an error. -- (GILT DAS NOCH?) member? : (PERM S, %)-> B ++ member?(pp,gp) answers the question, whether the ++ permutation {\em pp} is in the group {\em gp} or not. wordInStrongGenerators : (PERM S, %)-> L NNI ++ wordInStrongGenerators(p,gp) returns the word for the ++ permutation p in the strong generators of the group {\em gp}, ++ represented by the indices of the list, given by {\em strongGenerators}. wordInGenerators : (PERM S, %)-> L NNI ++ wordInGenerators(p,gp) returns the word for the permutation p ++ in the original generators of the group {\em gp}, ++ represented by the indices of the list, given by {\em generators}. support : % -> FSET S ++ support(gp) returns the points moved by the group {\em gp}. < : (%,%) -> B ++ gp1 < gp2 returns true if and only if {\em gp1} ++ is a proper subgroup of {\em gp2}. <= : (%,%) -> B ++ gp1 <= gp2 returns true if and only if {\em gp1} ++ is a subgroup of {\em gp2}. ++ Note: because of a bug in the parser you have to call this ++ function explicitly by {\em gp1 <=$(PERMGRP S) gp2}. -- (GILT DAS NOCH?) initializeGroupForWordProblem : % -> Void ++ initializeGroupForWordProblem(gp) initializes the group {\em gp} ++ for the word problem. ++ Notes: it calls the other function of this name with parameters ++ 0 and 1: {\em initializeGroupForWordProblem(gp,0,1)}. ++ Notes: (1) be careful: invoking this routine will destroy the ++ possibly information about your group (but will recompute it again) ++ (2) users need not call this function normally for the soultion of ++ the word problem. initializeGroupForWordProblem :(%,I,I) -> Void ++ initializeGroupForWordProblem(gp,m,n) initializes the group ++ {\em gp} for the word problem. ++ Notes: (1) with a small integer you get shorter words, but the ++ routine takes longer than the standard routine for longer words. ++ (2) be careful: invoking this routine will destroy the possibly stored ++ information about your group (but will recompute it again). ++ (3) users need not call this function normally for the soultion of ++ the word problem. private ==> add -- representation of the object: Rep := Record ( gens : L PERM S , information : REC2 ) -- import of domains and packages import Permutation S import OutputForm import Symbol import Void --first the local variables sgs : L V NNI := [] baseOfGroup : L NNI := [] sizeOfGroup : NNI := 1 degree : NNI := 0 gporb : L REC := [] out : L L V NNI := [] outword : L L L NNI := [] wordlist : L L NNI := [] basePoint : NNI := 0 newBasePoint : B := true supp : L S := [] ord : NNI := 1 wordProblem : B := true --local functions first, signatures: shortenWord:(L NNI, %)->L NNI times:(V NNI, V NNI)->V NNI strip:(V NNI,REC,L V NNI,L L NNI)->REC3 orbitInternal:(%,L S )->L L S inv: V NNI->V NNI ranelt:(L V NNI,L L NNI, I)->REC3 testIdentity:V NNI->B pointList: %->L S orbitWithSvc:(L V NNI ,NNI )->REC cosetRep:(NNI ,REC ,L V NNI )->REC3 bsgs1:(L V NNI,NNI,L L NNI,I,%,I)->NNI computeOrbits: I->L NNI reduceGenerators: I->Void bsgs:(%, I, I)->NNI initialize: %->FSET PERM S knownGroup?: %->Void subgroup:(%, %)->B memberInternal:(PERM S, %, B)->REC4 --local functions first, implementations: shortenWord ( lw : L NNI , gp : % ) : L NNI == -- tries to shorten a word in the generators by removing identities gpgens : L PERM S := coerce gp orderList : L NNI := [ order gen for gen in gpgens ] newlw : L NNI := copy lw for i in 1.. maxIndex orderList repeat if orderList.i = 1 then while member?(i,newlw) repeat -- removing the trivial element pos := position(i,newlw) newlw := delete(newlw,pos) flag : B := true while flag repeat actualLength : NNI := (maxIndex newlw) pretend NNI pointer := actualLength test := newlw.pointer anzahl : NNI := 1 flag := false while pointer > 1 repeat pointer := ( pointer - 1 )::NNI if newlw.pointer ~= test then -- don't get a trivial element, try next test := newlw.pointer anzahl := 1 else anzahl := anzahl + 1 if anzahl = orderList.test then -- we have an identity, so remove it for i in (pointer+anzahl)..actualLength repeat newlw.(i-anzahl) := newlw.i newlw := first(newlw, (actualLength - anzahl) :: NNI) flag := true pointer := 1 newlw times ( p : V NNI , q : V NNI ) : V NNI == -- internal multiplication of permutations [ qelt(p,qelt(q,i)) for i in 1..degree ] strip(element:V NNI,orbit:REC,group:L V NNI,words:L L NNI) : REC3 == -- strip an element into the stabilizer actelt := element schreierVector := orbit.svc point := orbit.orb.1 outlist := nil()$(L NNI) entryLessZero : B := false while not entryLessZero repeat entry := schreierVector.(actelt.point) entryLessZero := (entry < 0) if not entryLessZero then actelt := times(group.entry, actelt) if wordProblem then outlist := append ( words.(entry::NNI) , outlist ) [ actelt , reverse outlist ] orbitInternal ( gp : % , startList : L S ) : L L S == orbitList : L L S := [ startList ] pos : I := 1 while not zero? pos repeat gpset : L PERM S := gp.gens for gen in gpset repeat newList := nil()$(L S) workList := orbitList.pos for j in #workList..1 by -1 repeat newList := cons (gen(workList.j) , newList ) if not member?( newList , orbitList ) then orbitList := cons ( newList , orbitList ) pos := pos + 1 pos := pos - 1 reverse orbitList inv ( p : V NNI ) : V NNI == -- internal inverse of a permutation q : V NNI := new(degree,0)$(V NNI) for i in 1..degree repeat q.(qelt(p,i)) := i q ranelt ( group : L V NNI , word : L L NNI , maxLoops : I ) : REC3 == -- generate a "random" element numberOfGenerators := # group randomInteger : I := 1 + (random()$Integer rem numberOfGenerators) randomElement : V NNI := group.randomInteger words := nil()$(L NNI) if wordProblem then words := word.(randomInteger::NNI) if maxLoops > 0 then numberOfLoops : I := 1 + (random()$Integer rem maxLoops) else numberOfLoops : I := maxLoops while numberOfLoops > 0 repeat randomInteger : I := 1 + (random()$Integer rem numberOfGenerators) randomElement := times ( group.randomInteger , randomElement ) if wordProblem then words := append ( word.(randomInteger::NNI) , words) numberOfLoops := numberOfLoops - 1 [ randomElement , words ] testIdentity ( p : V NNI ) : B == -- internal test for identity for i in 1..degree repeat qelt(p,i) ~= i => return false true pointList(group : %) : L S == s : FSET S := brace() -- empty set !! for perm in group.gens repeat s := union(s, support perm) parts s orbitWithSvc ( group : L V NNI , point : NNI ) : REC == -- compute orbit with Schreier vector, "-2" means not in the orbit, -- "-1" means starting point, the PI correspond to generators newGroup := nil()$(L V NNI) for el in group repeat newGroup := cons ( inv el , newGroup ) newGroup := reverse newGroup orbit : L NNI := [ point ] schreierVector : V I := new ( degree , -2 ) schreierVector.point := -1 position : I := 1 while not zero? position repeat for i in 1..#newGroup repeat newPoint := orbit.position newPoint := newGroup.i.newPoint if not member? ( newPoint , orbit ) then orbit := cons ( newPoint , orbit ) position := position + 1 schreierVector.newPoint := i position := position - 1 [ reverse orbit , schreierVector ] cosetRep ( point : NNI , o : REC , group : L V NNI ) : REC3 == ppt := point xelt : V NNI := [ n for n in 1..degree ] word := nil()$(L NNI) oorb := o.orb osvc := o.svc while degree > 0 repeat p := osvc.ppt p < 0 => return [ xelt , word ] x := group.p xelt := times ( x , xelt ) if wordProblem then word := append ( wordlist.p , word ) ppt := x.ppt [xelt,word] bsgs1 (group:L V NNI,number1:NNI,words:L L NNI,maxLoops:I,gp:%,diff:I)_ : NNI == -- try to get a good approximation for the strong generators and base ort: REC k1: NNI i : NNI for i in number1..degree repeat ort := orbitWithSvc ( group , i ) k := ort.orb k1 := # k if k1 ~= 1 then leave gpsgs := nil()$(L V NNI) words2 := nil()$(L L NNI) gplength : NNI := #group jj: NNI for jj in 1..gplength repeat if (group.jj).i ~= i then leave for k in 1..gplength repeat el2 := group.k if el2.i ~= i then gpsgs := cons ( el2 , gpsgs ) if wordProblem then words2 := cons ( words.k , words2 ) else gpsgs := cons ( times ( group.jj , el2 ) , gpsgs ) if wordProblem _ then words2 := cons ( append ( words.jj , words.k ) , words2 ) group2 := nil()$(L V NNI) words3 := nil()$(L L NNI) j : I := 15 while j > 0 repeat -- find generators for the stabilizer ran := ranelt ( group , words , maxLoops ) str := strip ( ran.elt , ort , group , words ) el2 := str.elt if not testIdentity el2 then if not member?(el2,group2) then group2 := cons ( el2 , group2 ) if wordProblem then help : L NNI := append ( reverse str.lst , ran.lst ) help := shortenWord ( help , gp ) words3 := cons ( help , words3 ) j := j - 2 j := j - 1 -- this is for word length control if wordProblem then maxLoops := maxLoops - diff if ( null group2 ) or ( maxLoops < 0 ) then sizeOfGroup := k1 baseOfGroup := [ i ] out := [ gpsgs ] outword := [ words2 ] return sizeOfGroup k2 := bsgs1 ( group2 , i + 1 , words3 , maxLoops , gp , diff ) sizeOfGroup := k1 * k2 out := append ( out , [ gpsgs ] ) outword := append ( outword , [ words2 ] ) baseOfGroup := cons ( i , baseOfGroup ) sizeOfGroup computeOrbits ( kkk : I ) : L NNI == -- compute the orbits for the stabilizers sgs := nil() orbitLength := nil()$(L NNI) gporb := nil() for i in 1..#baseOfGroup repeat sgs := append ( sgs , out.i ) pt := #baseOfGroup - i + 1 obs := orbitWithSvc ( sgs , baseOfGroup.pt ) orbitLength := cons ( #obs.orb , orbitLength ) gporb := cons ( obs , gporb ) gporb := reverse gporb reverse orbitLength reduceGenerators ( kkk : I ) : Void == -- try to reduce number of strong generators orbitLength := computeOrbits ( kkk ) sgs := nil() wordlist := nil() for i in 1..(kkk-1) repeat sgs := append ( sgs , out.i ) if wordProblem then wordlist := append ( wordlist , outword.i ) removedGenerator := false baseLength : NNI := #baseOfGroup for nnn in kkk..(baseLength-1) repeat sgs := append ( sgs , out.nnn ) if wordProblem then wordlist := append ( wordlist , outword.nnn ) pt := baseLength - nnn + 1 obs := orbitWithSvc ( sgs , baseOfGroup.pt ) i : NNI := 1 while not ( i > # out.nnn ) repeat pos := position ( out.nnn.i , sgs ) sgs2 := delete(sgs, pos) obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt ) if # obs2.orb = orbitLength.nnn then test := true for j in (nnn+1)..(baseLength-1) repeat pt2 := baseLength - j + 1 sgs2 := append ( sgs2 , out.j ) obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt2 ) if # obs2.orb ~= orbitLength.j then test := false leave if test then removedGenerator := true sgs := delete (sgs, pos) if wordProblem then wordlist := delete(wordlist, pos) out.nnn := delete (out.nnn, i) if wordProblem then _ outword.nnn := delete(outword.nnn, i ) else i := i + 1 else i := i + 1 if removedGenerator then orbitLength := computeOrbits ( kkk ) bsgs ( group : % ,maxLoops : I , diff : I ) : NNI == -- the MOST IMPORTANT part of the package supp := pointList group degree := # supp if degree = 0 then sizeOfGroup := 1 sgs := [ [ 0 ] ] baseOfGroup := nil() gporb := nil() return sizeOfGroup newGroup := nil()$(L V NNI) gp : L PERM S := group.gens words := nil()$(L L NNI) for ggg in 1..#gp repeat q := new(degree,0)$(V NNI) for i in 1..degree repeat newEl := elt(gp.ggg,supp.i) pos2 := position ( newEl , supp ) q.i := pos2 pretend NNI newGroup := cons ( q , newGroup ) if wordProblem then words := cons(list ggg, words) if maxLoops < 1 then -- try to get the (approximate) base length if zero? (# ((group.information).gpbase)) then wordProblem := false k := bsgs1 ( newGroup , 1 , words , 20 , group , 0 ) wordProblem := true maxLoops := (# baseOfGroup) - 1 else maxLoops := (# ((group.information).gpbase)) - 1 k := bsgs1 ( newGroup , 1 , words , maxLoops , group , diff ) kkk : I := 1 newGroup := reverse newGroup noAnswer : B := true z: V NNI while noAnswer repeat reduceGenerators kkk -- *** Here is former "bsgs2" *** -- -- test whether we have a base and a strong generating set sgs := nil() wordlist := nil() for i in 1..(kkk-1) repeat sgs := append ( sgs , out.i ) if wordProblem then wordlist := append ( wordlist , outword.i ) noresult : B := true word3: L NNI word: L NNI for i in kkk..#baseOfGroup while noresult repeat sgs := append ( sgs , out.i ) if wordProblem then wordlist := append ( wordlist , outword.i ) gporbi := gporb.i for pt in gporbi.orb while noresult repeat ppp := cosetRep ( pt , gporbi , sgs ) y1 := inv ppp.elt word3 := ppp.lst for jjj in 1..#sgs while noresult repeat word := nil()$(L NNI) z := times ( sgs.jjj , y1 ) if wordProblem then word := append ( wordlist.jjj , word ) ppp := cosetRep ( (sgs.jjj).pt , gporbi , sgs ) z := times ( ppp.elt , z ) if wordProblem then word := append ( ppp.lst , word ) newBasePoint := false for j in (i-1)..1 by -1 while noresult repeat s := gporb.j.svc p := gporb.j.orb.1 while ( degree > 0 ) and noresult repeat entry := s.(z.p) if entry < 0 then if entry = -1 then leave basePoint := j::NNI noresult := false else ee := sgs.entry z := times ( ee , z ) if wordProblem then word := append ( wordlist.entry , word ) if noresult then basePoint := 1 newBasePoint := true noresult := testIdentity z noAnswer := not (testIdentity z) if noAnswer then -- we have missed something word2 := nil()$(L NNI) if wordProblem then for wd in word3 repeat ttt := newGroup.wd while not (testIdentity ttt) repeat word2 := cons ( wd , word2 ) ttt := times ( ttt , newGroup.wd ) word := append ( word , word2 ) word := shortenWord ( word , group ) if newBasePoint then for i in 1..degree repeat if z.i ~= i then baseOfGroup := append ( baseOfGroup , [ i ] ) leave out := cons (list z, out ) if wordProblem then outword := cons (list word , outword ) else out.basePoint := cons ( z , out.basePoint ) if wordProblem then outword.basePoint := cons(word ,outword.basePoint ) kkk := basePoint sizeOfGroup := 1 for j in 1..#baseOfGroup repeat sizeOfGroup := sizeOfGroup * # gporb.j.orb sizeOfGroup initialize ( group : % ) : FSET PERM S == group2 := brace()$(FSET PERM S) gp : L PERM S := group.gens for gen in gp repeat if degree gen > 0 then insert!(gen, group2) group2 knownGroup? (gp : %) : Void == -- do we know the group already? result := gp.information if result.order = 0 then wordProblem := false ord := bsgs ( gp , 20 , 0 ) result := [ ord , sgs , baseOfGroup , gporb , supp , [] ] gp.information := result else ord := result.order sgs := result.sgset baseOfGroup := result.gpbase gporb := result.orbs supp := result.mp wordlist := result.wd subgroup ( gp1 : % , gp2 : % ) : B == gpset1 := initialize gp1 gpset2 := initialize gp2 empty? difference (gpset1, gpset2) => true for el in parts gpset1 repeat not member? (el, gp2) => return false true memberInternal ( p : PERM S , gp : % , flag : B ) : REC4 == -- internal membership testing supp := pointList gp outlist := nil()$(L NNI) mP : L S := parts support p for x in mP repeat not member? (x, supp) => return [ false , nil()$(L NNI) ] if flag then member? ( p , gp.gens ) => return [ true , nil()$(L NNI) ] knownGroup? gp else result := gp.information if #(result.wd) = 0 then initializeGroupForWordProblem gp else ord := result.order sgs := result.sgset baseOfGroup := result.gpbase gporb := result.orbs supp := result.mp wordlist := result.wd degree := # supp pp := new(degree,0)$(V NNI) for i in 1..degree repeat el := p(supp.i) pos := position ( el , supp ) pp.i := pos::NNI words := nil()$(L L NNI) if wordProblem then for i in 1..#sgs repeat lw : L NNI := [ (#sgs - i + 1)::NNI ] words := cons ( lw , words ) for i in #baseOfGroup..1 by -1 repeat str := strip ( pp , gporb.i , sgs , words ) pp := str.elt if wordProblem then outlist := append ( outlist , str.lst ) [ testIdentity pp , reverse outlist ] --now the exported functions coerce ( gp : % ) : L PERM S == gp.gens generators ( gp : % ) : L PERM S == gp.gens strongGenerators ( group ) == knownGroup? group degree := # supp strongGens := nil()$(L PERM S) for i in sgs repeat pairs := nil()$(L L S) for j in 1..degree repeat pairs := cons ( [ supp.j , supp.(i.j) ] , pairs ) strongGens := cons ( coerceListOfPairs pairs , strongGens ) reverse strongGens elt ( gp , i ) == (gp.gens).i support ( gp ) == brace pointList gp random ( group , maximalNumberOfFactors ) == maximalNumberOfFactors < 1 => 1$(PERM S) gp : L PERM S := group.gens numberOfGenerators := # gp randomInteger : I := 1 + (random()$Integer rem numberOfGenerators) randomElement := gp.randomInteger numberOfLoops : I := 1 + (random()$Integer rem maximalNumberOfFactors) while numberOfLoops > 0 repeat randomInteger : I := 1 + (random()$Integer rem numberOfGenerators) randomElement := gp.randomInteger * randomElement numberOfLoops := numberOfLoops - 1 randomElement random ( group ) == random ( group , 20 ) order ( group ) == knownGroup? group ord degree ( group ) == # pointList group base ( group ) == knownGroup? group groupBase := nil()$(L S) for i in baseOfGroup repeat groupBase := cons ( supp.i , groupBase ) reverse groupBase wordsForStrongGenerators ( group ) == knownGroup? group wordlist coerce ( gp : L PERM S ) : % == result : REC2 := [ 0 , [] , [] , [] , [] , [] ] group := [ gp , result ] permutationGroup ( gp : L PERM S ) : % == result : REC2 := [ 0 , [] , [] , [] , [] , [] ] group := [ gp , result ] coerce(group: %) : OUT == outList := nil()$(L OUT) gp : L PERM S := group.gens for i in (maxIndex gp)..1 by -1 repeat outList := cons(coerce gp.i, outList) postfix(outputForm(">":SYM),postfix(commaSeparate outList,outputForm("<":SYM))) orbit ( gp : % , el : S ) : FSET S == elList : L S := [ el ] outList := orbitInternal ( gp , elList ) outSet := brace()$(FSET S) for i in 1..#outList repeat insert! ( outList.i.1 , outSet ) outSet orbits ( gp ) == spp := support gp orbits := nil()$(L FSET S) while cardinality spp > 0 repeat el := extract! spp orbitSet := orbit ( gp , el ) orbits := cons ( orbitSet , orbits ) spp := difference ( spp , orbitSet ) brace orbits member? (p, gp) == wordProblem := false mi := memberInternal ( p , gp , true ) mi.bool wordInStrongGenerators (p, gp ) == mi := memberInternal ( inv p , gp , false ) not mi.bool => error "p is not an element of gp" mi.lst wordInGenerators (p, gp) == lll : L NNI := wordInStrongGenerators (p, gp) outlist := nil()$(L NNI) for wd in lll repeat outlist := append ( outlist , wordlist.wd ) shortenWord ( outlist , gp ) gp1 < gp2 == not empty? difference ( support gp1 , support gp2 ) => false not subgroup ( gp1 , gp2 ) => false order gp1 = order gp2 => false true gp1 <= gp2 == not empty? difference ( support gp1 , support gp2 ) => false subgroup ( gp1 , gp2 ) gp1 = gp2 == support gp1 ~= support gp2 => false if #(gp1.gens) <= #(gp2.gens) then not subgroup ( gp1 , gp2 ) => return false else not subgroup ( gp2 , gp1 ) => return false order gp1 = order gp2 => true false orbit ( gp : % , startSet : FSET S ) : FSET FSET S == startList : L S := parts startSet outList := orbitInternal ( gp , startList ) outSet := brace()$(FSET FSET S) for i in 1..#outList repeat newSet : FSET S := brace outList.i insert! ( newSet , outSet ) outSet orbit ( gp : % , startList : L S ) : FSET L S == brace orbitInternal(gp, startList) initializeGroupForWordProblem ( gp , maxLoops , diff ) == wordProblem := true ord := bsgs ( gp , maxLoops , diff ) gp.information := [ ord , sgs , baseOfGroup , gporb , supp , wordlist ] initializeGroupForWordProblem ( gp ) == initializeGroupForWordProblem ( gp , 0 , 1 ) @ \section{package PGE PermutationGroupExamples} <<package PGE PermutationGroupExamples>>= )abbrev package PGE PermutationGroupExamples ++ Authors: M. Weller, G. Schneider, J. Grabmeier ++ Date Created: 20 February 1990 ++ Date Last Updated: 09 June 1990 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson: ++ Atlas of Finite Groups, Oxford, Clarendon Press, 1987 ++ Description: ++ PermutationGroupExamples provides permutation groups for ++ some classes of groups: symmetric, alternating, dihedral, cyclic, ++ direct products of cyclic, which are in fact the finite abelian groups ++ of symmetric groups called Young subgroups. ++ Furthermore, Rubik's group as permutation group of 48 integers and a list ++ of sporadic simple groups derived from the atlas of finite groups. PermutationGroupExamples():public == private where L ==> List I ==> Integer PI ==> PositiveInteger NNI ==> NonNegativeInteger PERM ==> Permutation PERMGRP ==> PermutationGroup public ==> with symmetricGroup: PI -> PERMGRP I ++ symmetricGroup(n) constructs the symmetric group {\em Sn} ++ acting on the integers 1,...,n, generators are the ++ {\em n}-cycle {\em (1,...,n)} and the 2-cycle {\em (1,2)}. symmetricGroup: L I -> PERMGRP I ++ symmetricGroup(li) constructs the symmetric group acting on ++ the integers in the list {\em li}, generators are the ++ cycle given by {\em li} and the 2-cycle {\em (li.1,li.2)}. ++ Note: duplicates in the list will be removed. alternatingGroup: PI -> PERMGRP I ++ alternatingGroup(n) constructs the alternating group {\em An} ++ acting on the integers 1,...,n, generators are in general the ++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)} ++ if n is odd and the product of the 2-cycle {\em (1,2)} with ++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)} ++ if n is even. alternatingGroup: L I -> PERMGRP I ++ alternatingGroup(li) constructs the alternating group acting ++ on the integers in the list {\em li}, generators are in general the ++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle ++ {\em (li.1,li.2,li.3)}, if n is odd and ++ product of the 2-cycle {\em (li.1,li.2)} with ++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle ++ {\em (li.1,li.2,li.3)}, if n is even. ++ Note: duplicates in the list will be removed. abelianGroup: L PI -> PERMGRP I ++ abelianGroup([n1,...,nk]) constructs the abelian group that ++ is the direct product of cyclic groups with order {\em ni}. cyclicGroup: PI -> PERMGRP I ++ cyclicGroup(n) constructs the cyclic group of order n acting ++ on the integers 1,...,n. cyclicGroup: L I -> PERMGRP I ++ cyclicGroup([i1,...,ik]) constructs the cyclic group of ++ order k acting on the integers {\em i1},...,{\em ik}. ++ Note: duplicates in the list will be removed. dihedralGroup: PI -> PERMGRP I ++ dihedralGroup(n) constructs the dihedral group of order 2n ++ acting on integers 1,...,N. dihedralGroup: L I -> PERMGRP I ++ dihedralGroup([i1,...,ik]) constructs the dihedral group of ++ order 2k acting on the integers out of {\em i1},...,{\em ik}. ++ Note: duplicates in the list will be removed. mathieu11: L I -> PERMGRP I ++ mathieu11(li) constructs the mathieu group acting on the 11 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed. ++ error, if {\em li} has less or more than 11 different entries. mathieu11: () -> PERMGRP I ++ mathieu11 constructs the mathieu group acting on the ++ integers 1,...,11. mathieu12: L I -> PERMGRP I ++ mathieu12(li) constructs the mathieu group acting on the 12 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed ++ Error: if {\em li} has less or more than 12 different entries. mathieu12: () -> PERMGRP I ++ mathieu12 constructs the mathieu group acting on the ++ integers 1,...,12. mathieu22: L I -> PERMGRP I ++ mathieu22(li) constructs the mathieu group acting on the 22 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed. ++ Error: if {\em li} has less or more than 22 different entries. mathieu22: () -> PERMGRP I ++ mathieu22 constructs the mathieu group acting on the ++ integers 1,...,22. mathieu23: L I -> PERMGRP I ++ mathieu23(li) constructs the mathieu group acting on the 23 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed. ++ Error: if {\em li} has less or more than 23 different entries. mathieu23: () -> PERMGRP I ++ mathieu23 constructs the mathieu group acting on the ++ integers 1,...,23. mathieu24: L I -> PERMGRP I ++ mathieu24(li) constructs the mathieu group acting on the 24 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed. ++ Error: if {\em li} has less or more than 24 different entries. mathieu24: () -> PERMGRP I ++ mathieu24 constructs the mathieu group acting on the ++ integers 1,...,24. janko2: L I -> PERMGRP I ++ janko2(li) constructs the janko group acting on the 100 ++ integers given in the list {\em li}. ++ Note: duplicates in the list will be removed. ++ Error: if {\em li} has less or more than 100 different entries janko2: () -> PERMGRP I ++ janko2 constructs the janko group acting on the ++ integers 1,...,100. rubiksGroup: () -> PERMGRP I ++ rubiksGroup constructs the permutation group representing ++ Rubic's Cube acting on integers {\em 10*i+j} for ++ {\em 1 <= i <= 6}, {\em 1 <= j <= 8}. ++ The faces of Rubik's Cube are labelled in the obvious way ++ Front, Right, Up, Down, Left, Back and numbered from 1 to 6 ++ in this given ordering, the pieces on each face ++ (except the unmoveable center piece) are clockwise numbered ++ from 1 to 8 starting with the piece in the upper left ++ corner. The moves of the cube are represented as permutations ++ on these pieces, represented as a two digit ++ integer {\em ij} where i is the numer of theface (1 to 6) ++ and j is the number of the piece on this face. ++ The remaining ambiguities are resolved by looking ++ at the 6 generators, which represent a 90 degree turns of the ++ faces, or from the following pictorial description. ++ Permutation group representing Rubic's Cube acting on integers ++ 10*i+j for 1 <= i <= 6, 1 <= j <=8. ++ ++ \begin{verbatim} ++ Rubik's Cube: +-----+ +-- B where: marks Side # : ++ / U /|/ ++ / / | F(ront) <-> 1 ++ L --> +-----+ R| R(ight) <-> 2 ++ | | + U(p) <-> 3 ++ | F | / D(own) <-> 4 ++ | |/ L(eft) <-> 5 ++ +-----+ B(ack) <-> 6 ++ ^ ++ | ++ D ++ ++ The Cube's surface: ++ The pieces on each side ++ +---+ (except the unmoveable center ++ |567| piece) are clockwise numbered ++ |4U8| from 1 to 8 starting with the ++ |321| piece in the upper left ++ +---+---+---+ corner (see figure on the ++ |781|123|345| left). The moves of the cube ++ |6L2|8F4|2R6| are represented as ++ |543|765|187| permutations on these pieces. ++ +---+---+---+ Each of the pieces is ++ |123| represented as a two digit ++ |8D4| integer ij where i is the ++ |765| # of the side ( 1 to 6 for ++ +---+ F to B (see table above )) ++ |567| and j is the # of the piece. ++ |4B8| ++ |321| ++ +---+ ++ \end{verbatim} youngGroup: L I -> PERMGRP I ++ youngGroup([n1,...,nk]) constructs the direct product of the ++ symmetric groups {\em Sn1},...,{\em Snk}. youngGroup: Partition -> PERMGRP I ++ youngGroup(lambda) constructs the direct product of the symmetric ++ groups given by the parts of the partition {\em lambda}. private ==> add -- import the permutation and permutation group domains: import PERM I import PERMGRP I -- import the needed map function: import ListFunctions2(L L I,PERM I) -- the internal functions: llli2gp(l:L L L I):PERMGRP I == --++ Converts an list of permutations each represented by a list --++ of cycles ( each of them represented as a list of Integers ) --++ to the permutation group generated by these permutations. (map(cycles,l))::PERMGRP I li1n(n:I):L I == --++ constructs the list of integers from 1 to n [i for i in 1..n] -- definition of the exported functions: youngGroup(l:L I):PERMGRP I == gens:= nil()$(L L L I) element:I:= 1 for n in l | n > 1 repeat gens:=cons(list [i for i in element..(element+n-1)], gens) if n >= 3 then gens := cons([[element,element+1]],gens) element:=element+n llli2gp #gens = 0 => [[[1]]] gens youngGroup(lambda : Partition):PERMGRP I == youngGroup(lambda::L(PI) pretend L I) rubiksGroup():PERMGRP I == -- each generator represents a 90 degree turn of the appropriate -- side. f:L L I:= [[11,13,15,17],[12,14,16,18],[51,31,21,41],[53,33,23,43],[52,32,22,42]] r:L L I:= [[21,23,25,27],[22,24,26,28],[13,37,67,43],[15,31,61,45],[14,38,68,44]] u:L L I:= [[31,33,35,37],[32,34,36,38],[13,51,63,25],[11,57,61,23],[12,58,62,24]] d:L L I:= [[41,43,45,47],[42,44,46,48],[17,21,67,55],[15,27,65,53],[16,28,66,54]] l:L L I:= [[51,53,55,57],[52,54,56,58],[11,41,65,35],[17,47,63,33],[18,48,64,34]] b:L L I:= [[61,63,65,67],[62,64,66,68],[45,25,35,55],[47,27,37,57],[46,26,36,56]] llli2gp [f,r,u,d,l,b] mathieu11(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 11 => error "Exactly 11 integers for mathieu11 needed !" a:L L I:=[[l.1,l.10],[l.2,l.8],[l.3,l.11],[l.5,l.7]] llli2gp [a,[[l.1,l.4,l.7,l.6],[l.2,l.11,l.10,l.9]]] mathieu11():PERMGRP I == mathieu11 li1n 11 mathieu12(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 12 => error "Exactly 12 integers for mathieu12 needed !" a:L L I:= [[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11]] llli2gp [a,[[l.1,l.6,l.5,l.8,l.3,l.7,l.4,l.2,l.9,l.10],[l.11,l.12]]] mathieu12():PERMGRP I == mathieu12 li1n 12 mathieu22(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 22 => error "Exactly 22 integers for mathieu22 needed !" a:L L I:=[[l.1,l.2,l.4,l.8,l.16,l.9,l.18,l.13,l.3,l.6,l.12], _ [l.5,l.10,l.20,l.17,l.11,l.22,l.21,l.19,l.15,l.7,l.14]] b:L L I:= [[l.1,l.2,l.6,l.18],[l.3,l.15],[l.5,l.8,l.21,l.13], _ [l.7,l.9,l.20,l.12],[l.10,l.16],[l.11,l.19,l.14,l.22]] llli2gp [a,b] mathieu22():PERMGRP I == mathieu22 li1n 22 mathieu23(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 23 => error "Exactly 23 integers for mathieu23 needed !" a:L L I:= [[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11,l.12,l.13,l.14,_ l.15,l.16,l.17,l.18,l.19,l.20,l.21,l.22,l.23]] b:L L I:= [[l.2,l.16,l.9,l.6,l.8],[l.3,l.12,l.13,l.18,l.4], _ [l.7,l.17,l.10,l.11,l.22],[l.14,l.19,l.21,l.20,l.15]] llli2gp [a,b] mathieu23():PERMGRP I == mathieu23 li1n 23 mathieu24(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 24 => error "Exactly 24 integers for mathieu24 needed !" a:L L I:= [[l.1,l.16,l.10,l.22,l.24],[l.2,l.12,l.18,l.21,l.7], _ [l.4,l.5,l.8,l.6,l.17],[l.9,l.11,l.13,l.19,l.15]] b:L L I:= [[l.1,l.22,l.13,l.14,l.6,l.20,l.3,l.21,l.8,l.11],[l.2,l.10], _ [l.4,l.15,l.18,l.17,l.16,l.5,l.9,l.19,l.12,l.7],[l.23,l.24]] llli2gp [a,b] mathieu24():PERMGRP I == mathieu24 li1n 24 janko2(l:L I):PERMGRP I == -- permutations derived from the ATLAS l:=removeDuplicates l #l ~= 100 => error "Exactly 100 integers for janko2 needed !" a:L L I:=[ _ [l.2,l.3,l.4,l.5,l.6,l.7,l.8], _ [l.9,l.10,l.11,l.12,l.13,l.14,l.15], _ [l.16,l.17,l.18,l.19,l.20,l.21,l.22], _ [l.23,l.24,l.25,l.26,l.27,l.28,l.29], _ [l.30,l.31,l.32,l.33,l.34,l.35,l.36], _ [l.37,l.38,l.39,l.40,l.41,l.42,l.43], _ [l.44,l.45,l.46,l.47,l.48,l.49,l.50], _ [l.51,l.52,l.53,l.54,l.55,l.56,l.57], _ [l.58,l.59,l.60,l.61,l.62,l.63,l.64], _ [l.65,l.66,l.67,l.68,l.69,l.70,l.71], _ [l.72,l.73,l.74,l.75,l.76,l.77,l.78], _ [l.79,l.80,l.81,l.82,l.83,l.84,l.85], _ [l.86,l.87,l.88,l.89,l.90,l.91,l.92], _ [l.93,l.94,l.95,l.96,l.97,l.98,l.99] ] b:L L I:=[ [l.1,l.74,l.83,l.21,l.36,l.77,l.44,l.80,l.64,l.2,l.34,l.75,l.48,l.17,l.100],_ [l.3,l.15,l.31,l.52,l.19,l.11,l.73,l.79,l.26,l.56,l.41,l.99,l.39,l.84,l.90],_ [l.4,l.57,l.86,l.63,l.85,l.95,l.82,l.97,l.98,l.81,l.8,l.69,l.38,l.43,l.58],_ [l.5,l.66,l.49,l.59,l.61],_ [l.6,l.68,l.89,l.94,l.92,l.20,l.13,l.54,l.24,l.51,l.87,l.27,l.76,l.23,l.67],_ [l.7,l.72,l.22,l.35,l.30,l.70,l.47,l.62,l.45,l.46,l.40,l.28,l.65,l.93,l.42],_ [l.9,l.71,l.37,l.91,l.18,l.55,l.96,l.60,l.16,l.53,l.50,l.25,l.32,l.14,l.33],_ [l.10,l.78,l.88,l.29,l.12] ] llli2gp [a,b] janko2():PERMGRP I == janko2 li1n 100 abelianGroup(l:L PI):PERMGRP I == gens:= nil()$(L L L I) element:I:= 1 for n in l | n > 1 repeat gens:=cons( list [i for i in element..(element+n-1) ], gens ) element:=element+n llli2gp #gens = 0 => [[[1]]] gens alternatingGroup(l:L I):PERMGRP I == l:=removeDuplicates l #l = 0 => error "Cannot construct alternating group on empty set" #l < 3 => llli2gp [[[l.1]]] #l = 3 => llli2gp [[[l.1,l.2,l.3]]] tmp:= [l.i for i in 3..(#l)] gens:L L L I:=[[tmp],[[l.1,l.2,l.3]]] odd?(#l) => llli2gp gens gens.1 := cons([l.1,l.2],gens.1) llli2gp gens alternatingGroup(n:PI):PERMGRP I == alternatingGroup li1n n symmetricGroup(l:L I):PERMGRP I == l:=removeDuplicates l #l = 0 => error "Cannot construct symmetric group on empty set !" #l < 3 => llli2gp [[l]] llli2gp [[l],[[l.1,l.2]]] symmetricGroup(n:PI):PERMGRP I == symmetricGroup li1n n cyclicGroup(l:L I):PERMGRP I == l:=removeDuplicates l #l = 0 => error "Cannot construct cyclic group on empty set" llli2gp [[l]] cyclicGroup(n:PI):PERMGRP I == cyclicGroup li1n n dihedralGroup(l:L I):PERMGRP I == l:=removeDuplicates l #l < 3 => error "in dihedralGroup: Minimum of 3 elements needed !" tmp := [[l.i, l.(#l-i+1) ] for i in 1..(#l quo 2)] llli2gp [ [ l ], tmp ] dihedralGroup(n:PI):PERMGRP I == n = 1 => symmetricGroup (2::PI) n = 2 => llli2gp [[[1,2]],[[3,4]]] dihedralGroup li1n n @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- Copyright (C) 2007-2010, Gabriel Dos Reis. -- All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain PERMGRP PermutationGroup>> <<package PGE PermutationGroupExamples>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}