\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra perm.spad} \author{Holger Gollan, Johannes Grabmeier, Gerhard Schneider} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category PERMCAT PermutationCategory} <>= )abbrev category PERMCAT PermutationCategory ++ Authors: Holger Gollan, Johannes Grabmeier, Gerhard Schneider ++ Date Created: 27 July 1989 ++ Date Last Updated: 29 March 1990 ++ Basic Operations: cycle, cycles, eval, orbit ++ Related Constructors: PermutationGroup, PermutationGroupExamples ++ Also See: RepresentationTheoryPackage1 ++ AMS Classifications: ++ Keywords: permutation, symmetric group ++ References: ++ Description: PermutationCategory provides a categorial environment ++ for subgroups of bijections of a set (i.e. permutations) PermutationCategory(S:SetCategory): Category == Group with cycle : List S -> % ++ cycle(ls) coerces a cycle {\em ls}, i.e. a list with not ++ repetitions to a permutation, which maps {\em ls.i} to ++ {\em ls.i+1}, indices modulo the length of the list. ++ Error: if repetitions occur. cycles : List List S -> % ++ cycles(lls) coerces a list list of cycles {\em lls} ++ to a permutation, each cycle being a list with not ++ repetitions, is coerced to the permutation, which maps ++ {\em ls.i} to {\em ls.i+1}, indices modulo the length of the list, ++ then these permutations are mutiplied. ++ Error: if repetitions occur in one cycle. eval : (%,S) -> S ++ eval(p, el) returns the image of {\em el} under the ++ permutation p. elt : (%,S) -> S ++ elt(p, el) returns the image of {\em el} under the ++ permutation p. orbit : (%,S) -> Set S ++ orbit(p, el) returns the orbit of {\em el} under the ++ permutation p, i.e. the set which is given by applications of ++ the powers of p to {\em el}. < : (%,%) -> Boolean ++ p < q is an order relation on permutations. ++ Note: this order is only total if and only if S is totally ordered ++ or S is finite. if S has OrderedSet then OrderedSet if S has Finite then OrderedSet @ \section{domain PERM Permutation} <>= )abbrev domain PERM Permutation ++ Authors: Johannes Grabmeier, Holger Gollan ++ Date Created: 19 May 1989 ++ Date Last Updated: 2 June 2006 ++ Basic Operations: _*, degree, movedPoints, cyclePartition, order, ++ numberOfCycles, sign, even?, odd? ++ Related Constructors: PermutationGroup, PermutationGroupExamples ++ Also See: RepresentationTheoryPackage1 ++ AMS Classifications: ++ Keywords: ++ Reference: G. James/A. Kerber: The Representation Theory of the Symmetric ++ Group. Encycl. of Math. and its Appl., Vol. 16., Cambridge ++ Description: Permutation(S) implements the group of all bijections ++ on a set S, which move only a finite number of points. ++ A permutation is considered as a map from S into S. In particular ++ multiplication is defined as composition of maps: ++ {\em pi1 * pi2 = pi1 o pi2}. ++ The internal representation of permuatations are two lists ++ of equal length representing preimages and images. Permutation(S:SetCategory): public == private where B ==> Boolean PI ==> PositiveInteger I ==> Integer L ==> List NNI ==> NonNegativeInteger V ==> Vector PT ==> Partition OUTFORM ==> OutputForm RECCYPE ==> Record(cycl: L L S, permut: %) RECPRIM ==> Record(preimage: L S, image : L S) public ==> PermutationCategory S with listRepresentation: % -> RECPRIM ++ listRepresentation(p) produces a representation {\em rep} of ++ the permutation p as a list of preimages and images, i.e ++ p maps {\em (rep.preimage).k} to {\em (rep.image).k} for all ++ indices k. Elements of \spad{S} not in {\em (rep.preimage).k} ++ are fixed points, and these are the only fixed points of the ++ permutation. coercePreimagesImages : List List S -> % ++ coercePreimagesImages(lls) coerces the representation {\em lls} ++ of a permutation as a list of preimages and images to a permutation. ++ We assume that both preimage and image do not contain repetitions. coerce : List List S -> % ++ coerce(lls) coerces a list of cycles {\em lls} to a ++ permutation, each cycle being a list with no ++ repetitions, is coerced to the permutation, which maps ++ {\em ls.i} to {\em ls.i+1}, indices modulo the length of the list, ++ then these permutations are mutiplied. ++ Error: if repetitions occur in one cycle. coerce : List S -> % ++ coerce(ls) coerces a cycle {\em ls}, i.e. a list with not ++ repetitions to a permutation, which maps {\em ls.i} to ++ {\em ls.i+1}, indices modulo the length of the list. ++ Error: if repetitions occur. coerceListOfPairs : List List S -> % ++ coerceListOfPairs(lls) coerces a list of pairs {\em lls} to a ++ permutation. ++ Error: if not consistent, i.e. the set of the first elements ++ coincides with the set of second elements. --coerce : % -> OUTFORM ++ coerce(p) generates output of the permutation p with domain ++ OutputForm. degree : % -> NonNegativeInteger ++ degree(p) retuns the number of points moved by the ++ permutation p. movedPoints : % -> Set S ++ movedPoints(p) returns the set of points moved by the permutation p. cyclePartition : % -> Partition ++ cyclePartition(p) returns the cycle structure of a permutation ++ p including cycles of length 1 only if S is finite. order : % -> NonNegativeInteger ++ order(p) returns the order of a permutation p as a group element. numberOfCycles : % -> NonNegativeInteger ++ numberOfCycles(p) returns the number of non-trivial cycles of ++ the permutation p. sign : % -> Integer ++ sign(p) returns the signum of the permutation p, +1 or -1. even? : % -> Boolean ++ even?(p) returns true if and only if p is an even permutation, ++ i.e. {\em sign(p)} is 1. odd? : % -> Boolean ++ odd?(p) returns true if and only if p is an odd permutation ++ i.e. {\em sign(p)} is {\em -1}. sort : L % -> L % ++ sort(lp) sorts a list of permutations {\em lp} according to ++ cycle structure first according to length of cycles, ++ second, if S has \spadtype{Finite} or S has ++ \spadtype{OrderedSet} according to lexicographical order of ++ entries in cycles of equal length. if S has Finite then fixedPoints : % -> Set S ++ fixedPoints(p) returns the points fixed by the permutation p. if S has IntegerNumberSystem or S has Finite then coerceImages : L S -> % ++ coerceImages(ls) coerces the list {\em ls} to a permutation ++ whose image is given by {\em ls} and the preimage is fixed ++ to be {\em [1,...,n]}. ++ Note: {coerceImages(ls)=coercePreimagesImages([1,...,n],ls)}. ++ We assume that both preimage and image do not contain repetitions. private ==> add -- representation of the object: Rep := V L S @ We represent a permutation as two lists of equal length representing preimages and images of moved points. I.e., fixed points do not occur in either of these lists. This enables us to compute the set of fixed points and the set of moved points easily. Note that this was not respected in versions before [[patch--50]] of this domain. <>= -- import of domains and packages import OutputForm import Vector List S -- variables p,q : % exp : I -- local functions first, signatures: smaller? : (S,S) -> B rotateCycle: L S -> L S coerceCycle: L L S -> % smallerCycle?: (L S, L S) -> B shorterCycle?:(L S, L S) -> B permord:(RECCYPE,RECCYPE) -> B coerceToCycle:(%,B) -> L L S duplicates?: L S -> B smaller?(a:S, b:S): B == S has OrderedSet => a <$S b S has Finite => lookup a < lookup b false rotateCycle(cyc: L S): L S == -- smallest element is put in first place -- doesn't change cycle if underlying set -- is not ordered or not finite. min:S := first cyc minpos:I := 1 -- 1 = minIndex cyc for i in 2..maxIndex cyc repeat if smaller?(cyc.i,min) then min := cyc.i minpos := i one? minpos => cyc concat(last(cyc,((#cyc-minpos+1)::NNI)),first(cyc,(minpos-1)::NNI)) coerceCycle(lls : L L S): % == perm : % := 1 for lists in reverse lls repeat perm := cycle lists * perm perm smallerCycle?(cyca: L S, cycb: L S): B == #cyca ~= #cycb => #cyca < #cycb for i in cyca for j in cycb repeat i ~= j => return smaller?(i, j) false shorterCycle?(cyca: L S, cycb: L S): B == #cyca < #cycb permord(pa: RECCYPE, pb : RECCYPE): B == for i in pa.cycl for j in pb.cycl repeat i ~= j => return smallerCycle?(i, j) #pa.cycl < #pb.cycl coerceToCycle(p: %, doSorting?: B): L L S == preim := p.1 im := p.2 cycles := nil()$(L L S) while not null preim repeat -- start next cycle firstEltInCycle: S := first preim nextCycle : L S := list firstEltInCycle preim := rest preim nextEltInCycle := first im im := rest im while nextEltInCycle ~= firstEltInCycle repeat nextCycle := cons(nextEltInCycle, nextCycle) i := position(nextEltInCycle, preim) preim := delete(preim,i) nextEltInCycle := im.i im := delete(im,i) nextCycle := reverse nextCycle -- check on 1-cycles, we don't list these if not null rest nextCycle then if doSorting? and (S has OrderedSet or S has Finite) then -- put smallest element in cycle first: nextCycle := rotateCycle nextCycle cycles := cons(nextCycle, cycles) not doSorting? => cycles -- sort cycles S has OrderedSet or S has Finite => sort(smallerCycle?,cycles)$(L L S) sort(shorterCycle?,cycles)$(L L S) duplicates? (ls : L S ): B == x := copy ls while not null x repeat member? (first x ,rest x) => return true x := rest x false -- now the exported functions listRepresentation p == s : RECPRIM := [p.1,p.2] coercePreimagesImages preImageAndImage == preImage: List S := [] image: List S := [] for i in preImageAndImage.1 for pi in preImageAndImage.2 repeat if i ~= pi then preImage := cons(i, preImage) image := cons(pi, image) [preImage, image] @ This operation transforms a pair of preimages and images into an element of the domain. Since we assume that fixed points do not occur in the representation, we have to sort them out here. Note that before [[patch--50]] this read \begin{verbatim} coercePreimagesImages preImageAndImage == p : % := [preImageAndImage.1,preImageAndImage.2] \end{verbatim} causing bugs when computing [[movedPoints]], [[fixedPoints]], [[even?]], [[odd?]], etc., as reported in Issue~\#295. The other coercion facilities check for fixed points. It also seems that [[*]] removes fixed points from its result. <>= p := coercePreimagesImages([[1,2,3],[1,2,3]]) movedPoints p -- should return {} even? p -- should return true p := coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4 fixedPoints p -- should return {2} q := coercePreimagesImages([[0,1,2,3],[1,0]])$PERM ZMOD 4 fixedPoints(p*q) -- should return {2,0} even?(p*q) -- should return false @ <>= movedPoints p == construct p.1 degree p == #movedPoints p p = q == #(preimp := p.1) ~= #(preimq := q.1) => false for i in 1..maxIndex preimp repeat pos := position(preimp.i, preimq) pos = 0 => return false (p.2).i ~= (q.2).pos => return false true orbit(p ,el) == -- start with a 1-element list: out : Set S := brace list el el2 := eval(p, el) while el2 ~= el repeat -- be carefull: insert adds one element -- as side effect to out insert_!(el2, out) el2 := eval(p, el2) out cyclePartition p == partition([#c for c in coerceToCycle(p, false)])$Partition order p == ord: I := lcm removeDuplicates convert cyclePartition p ord::NNI sign(p) == even? p => 1 - 1 even?(p) == even?(#(p.1) - numberOfCycles p) -- see the book of James and Kerber on symmetric groups -- for this formula. odd?(p) == odd?(#(p.1) - numberOfCycles p) pa < pb == pacyc:= coerceToCycle(pa,true) pbcyc:= coerceToCycle(pb,true) for i in pacyc for j in pbcyc repeat i ~= j => return smallerCycle? ( i, j ) maxIndex pacyc < maxIndex pbcyc coerce(lls : L L S): % == coerceCycle lls coerce(ls : L S): % == cycle ls sort(inList : L %): L % == not (S has OrderedSet or S has Finite) => inList ownList: L RECCYPE := nil()$(L RECCYPE) for sigma in inList repeat ownList := cons([coerceToCycle(sigma,true),sigma]::RECCYPE, ownList) ownList := sort(permord, ownList)$(L RECCYPE) outList := nil()$(L %) for rec in ownList repeat outList := cons(rec.permut, outList) reverse outList coerce (p: %): OUTFORM == cycles: L L S := coerceToCycle(p,true) outfmL : L OUTFORM := nil() for cycle in cycles repeat outcycL: L OUTFORM := nil() for elt in cycle repeat outcycL := cons(elt :: OUTFORM, outcycL) outfmL := cons(paren blankSeparate reverse outcycL, outfmL) -- The identity element will be output as 1: null outfmL => outputForm(1@Integer) -- represent a single cycle in the form (a b c d) -- and not in the form ((a b c d)): null rest outfmL => first outfmL hconcat reverse outfmL cycles(vs ) == coerceCycle vs cycle(ls) == #ls < 2 => 1 duplicates? ls => error "cycle: the input contains duplicates" [ls, append(rest ls, list first ls)] coerceListOfPairs(loP) == preim := nil()$(L S) im := nil()$(L S) for pair in loP repeat if first pair ~= second pair then preim := cons(first pair, preim) im := cons(second pair, im) duplicates?(preim) or duplicates?(im) or brace(preim)$(Set S) _ ~= brace(im)$(Set S) => error "coerceListOfPairs: the input cannot be interpreted as a permutation" [preim, im] q * p == -- use vectors for efficiency?? preimOfp : V S := construct p.1 imOfp : V S := construct p.2 preimOfq := q.1 imOfq := q.2 preimOfqp := nil()$(L S) imOfqp := nil()$(L S) -- 1 = minIndex preimOfp for i in 1..(maxIndex preimOfp) repeat -- find index of image of p.i in q if it exists j := position(imOfp.i, preimOfq) if j = 0 then -- it does not exist preimOfqp := cons(preimOfp.i, preimOfqp) imOfqp := cons(imOfp.i, imOfqp) else -- it exists el := imOfq.j -- if the composition fixes the element, we don't -- have to do anything if el ~= preimOfp.i then preimOfqp := cons(preimOfp.i, preimOfqp) imOfqp := cons(el, imOfqp) -- we drop the parts of q which have to do with p preimOfq := delete(preimOfq, j) imOfq := delete(imOfq, j) [append(preimOfqp, preimOfq), append(imOfqp, imOfq)] 1 == new(2,empty())$Rep inv p == [p.2, p.1] eval(p, el) == pos := position(el, p.1) pos = 0 => el (p.2).pos elt(p, el) == eval(p, el) numberOfCycles p == #coerceToCycle(p, false) if S has IntegerNumberSystem then coerceImages (image) == preImage : L S := [i::S for i in 1..maxIndex image] coercePreimagesImages [preImage,image] @ Up to [[patch--50]] we did not check for duplicates. <>= if S has Finite then coerceImages (image) == preImage : L S := [index(i::PI)::S for i in 1..maxIndex image] coercePreimagesImages [preImage,image] @ Up to [[patch--50]] we did not check for duplicates. <>= fixedPoints ( p ) == complement movedPoints p cyclePartition p == pt := partition([#c for c in coerceToCycle(p, false)])$Partition pt +$PT conjugate(partition([#fixedPoints(p)])$PT)$PT @ \section{License} <>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> <> <> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}