\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra outform.spad}
\author{Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NUMFMT NumberFormats}
<<package NUMFMT NumberFormats>>=
)abbrev package NUMFMT NumberFormats
++ SMW March 88
++ Keywords: string manipulation, roman numerals, format
++ Description:
++ NumberFormats provides function to format and read arabic and
++ roman numbers, to convert numbers to strings and to read
++ floating-point numbers.

NumberFormats(): NFexports == NFimplementation where
    PI ==> PositiveInteger
    I  ==> Integer
    C  ==> Character
    F  ==> Float
    S  ==> String
    V  ==> PrimitiveArray

    NFexports ==> with
        FormatArabic: PI -> S
            ++ FormatArabic(n) forms an Arabic numeral
            ++ string from an integer n.
        ScanArabic:   S -> PI
            ++ ScanArabic(s) forms an integer from an Arabic numeral string s.
        FormatRoman:  PI -> S
            ++ FormatRoman(n) forms a Roman numeral string from an integer n.
        ScanRoman:    S -> PI
            ++ ScanRoman(s) forms an integer from a Roman numeral string s.
        ScanFloatIgnoreSpaces: S -> F
            ++ ScanFloatIgnoreSpaces(s) forms a floating point number from
            ++ the string s ignoring any spaces. Error is generated if the
            ++ string is not recognised as a floating point number.
        ScanFloatIgnoreSpacesIfCan: S -> Union(F, "failed")
            ++ ScanFloatIgnoreSpacesIfCan(s) tries to form a floating point number from
            ++ the string s ignoring any spaces.


    NFimplementation ==> add
        import SExpression
        import Symbol
        replaceD: C -> C
        replaced: C -> C
        contract: S -> S
        check: S ->Boolean
        replaceD c ==
          if c = char "D" then char "E" else c
        replaced c ==
          if c = char "d" then char "E" else c
        contract s ==
          s:= map(replaceD,s)
          s:= map(replaced,s)
          ls:List S := split(s,char " ")$String
          s:= concat ls
        check s ==
          NUMBERP(READ_-FROM_-STRING(s)$Lisp)$Lisp and
           -- if there is an "E" then there must be a "."
           -- this is not caught by code above
           -- also if the exponent is v.big the above returns false
           not (any?(#1=char "E",s) and not any?(#1=char ".",s) )

--        Original interpreter function:
--        )lis (defun scanstr(x) (spadcomp::|parseFromString| x))
        sexfloat:SExpression:=convert(coerce("Float")@Symbol)$SExpression
        ScanFloatIgnoreSpaces s ==
          s := contract s
          not check s => error "Non-numeric value"
          sex := interpret(packageTran(ncParseFromString(s)$Lisp)$Lisp)$Lisp
          sCheck := car(car(sex))
          if (sCheck=sexfloat) = true then
             f := (cdr cdr sex) pretend Float
          else
             if integer?(cdr sex) = true then
                f := (cdr sex) pretend Integer
                f::F
             else
                error "Non-numeric value"

        ScanFloatIgnoreSpacesIfCan s ==
          s := contract s
	  not check s => "failed"
          sex := interpret(packageTran(ncParseFromString(s)$Lisp)$Lisp)$Lisp
          sCheck := car(car(sex))
          if (sCheck=sexfloat) = true then
             f := (cdr cdr sex) pretend Float
          else
             if integer?(cdr sex) = true then
                f := (cdr sex) pretend Integer
                f::F
             else
                "failed"

        units:V S :=
           construct ["","I","II","III","IV","V","VI","VII","VIII","IX"]
        tens :V S :=
           construct ["","X","XX","XXX","XL","L","LX","LXX","LXXX","XC"]
        hunds:V S :=
           construct ["","C","CC","CCC","CD","D","DC","DCC","DCCC","CM"]
        umin := minIndex units
        tmin := minIndex tens
        hmin := minIndex hunds
        romval:V I := new(256, -1)
        romval ord char(" ")$C := 0
        romval ord char("I")$C := 1
        romval ord char("V")$C := 5
        romval ord char("X")$C := 10
        romval ord char("L")$C := 50
        romval ord char("C")$C := 100
        romval ord char("D")$C := 500
        romval ord char("M")$C := 1000
        thou:C  := char "M"
        plen:C  := char "("
        pren:C  := char ")"
        ichar:C := char "I"

        FormatArabic n == string(n)$String
        ScanArabic   s == PARSE_-INTEGER(s)$Lisp

        FormatRoman pn ==
            n := pn::Integer
            -- Units
            d := (n rem 10) + umin
            n := n quo 10
            s := units.d
            zero? n => s
            -- Tens
            d := (n rem 10) + tmin
            n := n quo 10
            s := concat(tens.d, s)
            zero? n => s
            -- Hundreds
            d := (n rem 10) + hmin
            n := n quo 10
            s := concat(hunds.d, s)
            zero? n => s
            -- Thousands
            d := n rem 10
            n := n quo 10
            s := concat(new(d::NonNegativeInteger, thou), s)
            zero? n => s
            -- Ten thousand and higher
            for i in 2.. while not zero? n repeat
                -- Coefficient of 10**(i+2)
                d := n rem 10
                n := n quo 10
                zero? d => iterate
                m0:String := concat(new(i,plen),concat("I",new(i,pren)))
                mm := concat([m0 for j in 1..d]$List(String))
                -- strictly speaking the blank is gratuitous
                if positive?(#s) then s := concat(" ", s)
                s  := concat(mm, s)
            s

        -- ScanRoman
        --
        -- The Algorithm:
        --    Read number from right to left.  When the current
        --    numeral is lower in magnitude than the previous maximum
        --    then subtract otherwise add.
        --    Shift left and repeat until done.

        ScanRoman s ==
            s      := upperCase s
            tot: I := 0
            Max: I := 0
            i:   I := maxIndex s
            while i >= minIndex s repeat
                -- Read a single roman digit
                c := s.i; i := i-1
                n := romval ord c
                -- (I)=1000, ((I))=10000, (((I)))=100000, etc
                if negative? n then
                    c ~= pren =>
                       error ["Improper character in Roman numeral: ",c]
                    nprens: PI := 1
                    while c = pren and i >= minIndex s repeat
                       c := s.i; i := i-1
                       if c = pren then nprens := nprens+1
                    c ~= ichar =>
                       error "Improper Roman numeral: (x)"
                    for k in 1..nprens while i >= minIndex s repeat
                       c := s.i; i := i-1
                       c ~= plen =>
                          error "Improper Roman numeral: unbalanced ')'"
                    n := 10**(nprens + 2)
                if n < Max then
                    tot := tot - n
                else
                    tot := tot + n
                    Max := n
            negative? tot => error ["Improper Roman numeral: ", tot]
            tot::PI

@

\section{domain OUTFORM OutputForm}

<<domain OUTFORM OutputForm>>=
import Void
import Boolean
import Integer
import NonNegativeInteger
import DoubleFloat
import Symbol
import String
import List
)abbrev domain OUTFORM OutputForm
++ Keywords: output, I/O, expression
++ SMW March/88
++ Description:
++ This domain is used to create and manipulate mathematical expressions
++ for output.  It is intended to provide an insulating layer between
++ the expression rendering software (e.g.FORTRAN, TeX, or Script) and
++ the output coercions in the various domains.

OutputForm(): SetCategory with
        --% Printing
        print  : % -> Void
          ++ print(u) prints the form u.
        message: String -> %
          ++ message(s) creates an form with no string quotes
          ++ from string s.
        messagePrint: String -> Void
          ++ messagePrint(s) prints s without string quotes. Note:
          ++ \spad{messagePrint(s)} is equivalent to \spad{print message(s)}.
        --% Creation of atomic forms
        outputForm: Integer -> %
          ++ outputForm(n) creates an form for integer n.
        outputForm: Symbol  -> %
          ++ outputForm(s) creates an form for symbol s.
        outputForm: String  -> %
          ++ outputForm(s) creates an form for string s.
        outputForm: DoubleFloat  -> %
          ++ outputForm(sf) creates an form for small float sf.
        empty   : () -> %
          ++ empty() creates an empty form.
        doubleFloatFormat : String -> String	
          ++ change the output format for doublefloats using lisp 
          ++ format strings

        --% Sizings
        width: % -> Integer
          ++ width(f) returns the width of form f (an integer).
        height: % -> Integer
          ++ height(f) returns the height of form f (an integer).
        width: -> Integer
          ++ width() returns the width of the display area (an integer).
        height: -> Integer
          ++ height() returns the height of the display area (an integer).
        subHeight: % -> Integer
          ++ subHeight(f) returns the height of form f below the base line.
        superHeight: % -> Integer
          ++ superHeight(f) returns the height of form f above the base line.
         --% Space manipulations
        hspace: Integer -> %  ++ hspace(n) creates white space of width n.
        vspace: Integer -> %  ++ vspace(n) creates white space of height n.
        rspace: (Integer,Integer) -> %
          ++ rspace(n,m) creates rectangular white space, n wide by m high.
        --% Area adjustments
        left: (%,Integer) -> %
          ++ left(f,n) left-justifies form f within space of width n.
        right: (%,Integer) -> %
          ++ right(f,n) right-justifies form f within space of width n.
        center: (%,Integer) -> %
          ++ center(f,n) centers form f within space of width n.
        left: % -> %
          ++ left(f) left-justifies form f in total space.
        right: % -> %
          ++ right(f) right-justifies form f in total space.
        center:   % -> %
          ++ center(f) centers form f in total space.

        --% Area manipulations
        hconcat:  (%,%) -> %
          ++ hconcat(f,g) horizontally concatenate forms f and g.
        vconcat:  (%,%) -> %
          ++ vconcat(f,g) vertically concatenates forms f and g.
        hconcat:  List % -> %
          ++ hconcat(u) horizontally concatenates all forms in list u.
        vconcat:  List % -> %
          ++ vconcat(u) vertically concatenates all forms in list u.

        --% Application formers
        prefix:  (%, List %) -> %
          ++ prefix(f,l) creates a form depicting the n-ary prefix
          ++ application of f to a tuple of arguments given by list l.
        infix:   (%, List %) -> %
          ++ infix(f,l) creates a form depicting the n-ary application
          ++ of infix operation f to a tuple of arguments l.
        infix:   (%, %, %) -> %
          ++ infix(op, a, b) creates a form which prints as: a op b.
        postfix: (%, %)    -> %
          ++ postfix(op, a)  creates a form which prints as: a op.
        infix?: % -> Boolean
          ++ infix?(op) returns true if op is an infix operator,
          ++ and false otherwise.
        elt:     (%, List %) -> %
          ++ elt(op,l) creates a form for application of op
          ++ to list of arguments l.

        --% Special forms
        string:  % -> %
          ++ string(f) creates f with string quotes.
        label:   (%, %) -> %
          ++ label(n,f) gives form f an equation label n.
        box:     % -> %
          ++ box(f) encloses f in a box.
        matrix:  List List % -> %
          ++ matrix(llf) makes llf (a list of lists of forms) into
          ++ a form which displays as a matrix.
        zag:     (%, %) -> %
          ++ zag(f,g) creates a form for the continued fraction form for f over g.
        root:    % -> %
          ++ root(f) creates a form for the square root of form f.
        root:    (%, %) -> %
          ++ root(f,n) creates a form for the nth root of form f.
        over:    (%, %) -> %
          ++ over(f,g) creates a form for the vertical fraction of f over g.
        slash:   (%, %) -> %
          ++ slash(f,g) creates a form for the horizontal fraction of f over g.
        assign:  (%, %) -> %
          ++ assign(f,g) creates a form for the assignment \spad{f := g}.
        rarrow:  (%, %) -> %
          ++ rarrow(f,g) creates a form for the mapping \spad{f -> g}.
        differentiate: (%, NonNegativeInteger) -> %
          ++ differentiate(f,n) creates a form for the nth derivative of f,
          ++ e.g. \spad{f'}, \spad{f''}, \spad{f'''},
          ++ "f super \spad{iv}".
        binomial: (%, %) -> %
          ++ binomial(n,m) creates a form for the binomial coefficient of n and m.

        --% Scripts
        sub:     (%, %) -> %
          ++ sub(f,n) creates a form for f subscripted by n.
        super:   (%, %) -> %
          ++ super(f,n) creates a form for f superscripted by n.
        presub:  (%, %) -> %
          ++ presub(f,n) creates a form for f presubscripted by n.
        presuper:(%, %) -> %
          ++ presuper(f,n) creates a form for f presuperscripted by n.
        scripts: (%, List %) -> %
            ++ \spad{scripts(f, [sub, super, presuper, presub])}
            ++  creates a form for f with scripts on all 4 corners.
        supersub:(%, List %) -> %
            ++ supersub(a,[sub1,super1,sub2,super2,...])
            ++ creates a form with each subscript aligned
            ++ under each superscript.

        --% Diacritical marks
        quote:   % -> %
          ++ quote(f) creates the form f with a prefix quote.
        dot:     % -> %
          ++ dot(f) creates the form with a one dot overhead.
        dot:     (%, NonNegativeInteger) -> %
          ++ dot(f,n) creates the form f with n dots overhead.
        prime:   % -> %
          ++ prime(f) creates the form f followed by a suffix prime (single quote).
        prime:   (%, NonNegativeInteger) -> %
          ++ prime(f,n) creates the form f followed by n primes.
        overbar: % -> %
          ++ overbar(f) creates the form f with an overbar.
        overlabel: (%, %) -> %
          ++ overlabel(x,f) creates the form f with "x overbar" over the top.

        --% Plexes
        sum:     (%)       -> %
          ++ sum(expr) creates the form prefixing expr by a capital sigma.
        sum:     (%, %)    -> %
          ++ sum(expr,lowerlimit) creates the form prefixing expr by
          ++ a capital sigma with a lowerlimit.
        sum:     (%, %, %) -> %
          ++ sum(expr,lowerlimit,upperlimit) creates the form prefixing expr by
          ++ a capital sigma with both a lowerlimit and upperlimit.
        prod:    (%)       -> %
          ++ prod(expr) creates the form prefixing expr by a capital pi.
        prod:    (%, %)    -> %
          ++ prod(expr,lowerlimit) creates the form prefixing expr by
          ++ a capital pi with a lowerlimit.
        prod:    (%, %, %) -> %
          ++ prod(expr,lowerlimit,upperlimit) creates the form prefixing expr by
          ++ a capital pi with both a lowerlimit and upperlimit.
        int:     (%)       -> %
          ++ int(expr) creates the form prefixing expr with an integral sign.
        int:     (%, %)    -> %
          ++ int(expr,lowerlimit) creates the form prefixing expr by an
          ++ integral sign with a lowerlimit.
        int:     (%, %, %) -> %
          ++ int(expr,lowerlimit,upperlimit) creates the form prefixing expr by
          ++ an integral sign with both a lowerlimit and upperlimit.

        --% Matchfix forms
        brace:   % -> %
          ++ brace(f) creates the form enclosing f in braces (curly brackets).
        brace:   List % -> %
          ++ brace(lf) creates the form separating the elements of lf
          ++ by commas and encloses the result in curly brackets.
        bracket: % -> %
          ++ bracket(f) creates the form enclosing f in square brackets.
        bracket: List % -> %
          ++ bracket(lf) creates the form separating the elements of lf
          ++ by commas and encloses the result in square brackets.
        paren:   % -> %
          ++ paren(f) creates the form enclosing f in parentheses.
        paren:   List % -> %
          ++ paren(lf) creates the form separating the elements of lf
          ++ by commas and encloses the result in parentheses.

        --% Separators for aggregates
        pile:     List % -> %
          ++ pile(l) creates the form consisting of the elements of l which
          ++ displays as a pile, i.e. the elements begin on a new line and
          ++ are indented right to the same margin.

        commaSeparate: List % -> %
          ++ commaSeparate(l) creates the form separating the elements of l
          ++ by commas.
        semicolonSeparate:  List % -> %
          ++ semicolonSeparate(l) creates the form separating the elements of l
          ++ by semicolons.
        blankSeparate: List % -> %
          ++ blankSeparate(l) creates the form separating the elements of l
          ++ by blanks.
        --% Specific applications
        =:     (%, %) -> %
          ++ f = g creates the equivalent infix form.
        ~=:    (%, %) -> %
          ++ f ~= g creates the equivalent infix form.
        <:     (%, %) -> %
          ++ f < g creates the equivalent infix form.
        >:     (%, %) -> %
          ++ f > g creates the equivalent infix form.
        <=:    (%, %) -> %
          ++ f <= g creates the equivalent infix form.
        >=:    (%, %) -> %
          ++ f >= g creates the equivalent infix form.
        +:     (%, %) -> %
          ++ f + g creates the equivalent infix form.
        -:     (%, %) -> %
          ++ f - g creates the equivalent infix form.
        -:     (%)    -> %
          ++ - f creates the equivalent prefix form.
        *:     (%, %) -> %
          ++ f * g creates the equivalent infix form.
        /:     (%, %) -> %
          ++ f / g creates the equivalent infix form.
        **:    (%, %) -> %
          ++ f ** g creates the equivalent infix form.
        div:   (%, %) -> %
          ++ f div g creates the equivalent infix form.
        rem:   (%, %) -> %
          ++ f rem g creates the equivalent infix form.
        quo:   (%, %) -> %
          ++ f quo g creates the equivalent infix form.
        exquo: (%, %) -> %
          ++ exquo(f,g) creates the equivalent infix form.
        and:   (%, %) -> %
          ++ f and g creates the equivalent infix form.
        or:    (%, %) -> %
          ++ f or g creates the equivalent infix form.
        not:   (%)    -> %
          ++ not f creates the equivalent prefix form.
        SEGMENT: (%,%)  -> %
          ++ SEGMENT(x,y) creates the infix form: \spad{x..y}.
        SEGMENT: (%)    -> %
          ++ SEGMENT(x) creates the prefix form: \spad{x..}.

    == add
        import NumberFormats
        import %peq: (%,%) -> Boolean         from Foreign Builtin
        import %equal: (%,%) -> Boolean       from Foreign Builtin
        import %string?: % -> Boolean         from Foreign Builtin
        import %ident?: % -> Boolean          from Foreign Builtin
        import %nil: %                        from Foreign Builtin
        import %property: (%,Identifier) -> % from Foreign Builtin

        -- Todo:
        --   program forms, greek letters
        --   infix, prefix, postfix, matchfix support in OUT BOOT
        --   labove rabove, corresponding overs.
        --   better super script, overmark, undermark
        --   bug in product, paren blankSeparate []
        --   uniformize integrals, products, etc as plexes.

        cons ==> %pair$Foreign(Builtin)
        car  ==> %head$Foreign(Builtin)
        cdr  ==> %tail$Foreign(Builtin)

        format: String := "~G"
        doubleFloatFormat(s:String): String ==
          ss: String := format
          format := s
          ss

        a, b: %
        s: String
        e: Symbol
        n: Integer
        nn:NonNegativeInteger

        sform(s: String): % == s pretend %
        eform(e: Identifier): % == e pretend %
        iform(i: Integer): % == i pretend %

        bless(x: List %): % == x pretend %

        print x              == mathprint(x)$Lisp
        message s            == (empty? s => empty(); s pretend %)
        messagePrint s       == print message s
        (a:% = b:%): Boolean == %equal(a,b)
        (a:% = b:%):%        == bless [eform '=,     a, b]
        coerce(a):OutputForm  == a pretend OutputForm
        outputForm n          == n pretend %
        outputForm e          == e pretend %
        outputForm(f:DoubleFloat) == 
          -- ??? this really should be rendered in as a sequence of
          -- ??? OutputForm bytecodes, not hardcoded here.
          DFLOAT_-FORMAT_-GENERAL(f)$Lisp

        outputForm s ==
          sform concat(quote()$Character, concat(s, quote()$Character))

        width(a) == outformWidth(a)$Lisp
        height(a) == height(a)$Lisp
        subHeight(a) == subspan(a)$Lisp
        superHeight(a) == superspan(a)$Lisp
        height() == 20
        width() == 66

        center(a,w)   == hconcat(hspace((w - width(a)) quo 2),a)
        left(a,w)     == hconcat(a,hspace((w - width(a))))
        right(a,w)    == hconcat(hspace(w - width(a)),a)
        center(a)     == center(a,width())
        left(a)       == left(a,width())
        right(a)      == right(a,width())

        vspace(n) ==
          n <= 0 => empty()
          vconcat(sform " ",vspace(n - 1))

        hspace(n) ==
          n <= 0 => empty()
          sform(fillerSpaces(n)$Lisp)

        rspace(n, m) ==
          n <= 0 or m <= 0 => empty()
          vconcat(hspace n, rspace(n, m - 1))

        matrix ll ==
            lv := bless [LIST2VEC$Lisp l for l in ll]
            CONS(eform MATRIX, LIST2VEC$Lisp lv)$Lisp

        pile l              == cons(eform 'SC, l)
        commaSeparate l     == cons(eform 'AGGLST,  l)
        semicolonSeparate l == cons(eform 'AGGSET,  l)
        blankSeparate l     ==
           c:=eform 'CONCATB
           l1: List % :=[]
           for u in reverse l repeat
               if EQCAR(u,c)$Lisp
                  then l1:=[:cdr u,:l1]
                  else l1:=[u,:l1]
           cons(c, l1)

        brace a            == bless [eform 'BRACE,   a]
        brace(l: List %)   == brace commaSeparate l
        bracket a          == bless [eform 'BRACKET, a]
        bracket(l: List %) == bracket commaSeparate l
        paren a            == bless [eform 'PAREN,   a]
        paren(l: List %)   == paren commaSeparate l

        sub     (a,b)  == bless [eform 'SUB, a, b]
        super   (a, b) == bless [eform 'SUPERSUB,a,sform " ",b]
        presub(a,b) == 
          bless [eform 'SUPERSUB,a,sform " ",sform " ",sform " ",b]
        presuper(a, b) == bless [eform 'SUPERSUB,a,sform " ",sform " ",b]
        scripts (a, l) ==
            null l => a
            null rest l => sub(a, first l)
            cons(eform 'SUPERSUB, cons(a, l))
        supersub(a, l) ==
            if odd?(#l) then l := append(l, [empty()])
            cons(eform 'ALTSUPERSUB, cons(a, l))

        hconcat(a,b)  == bless [eform 'CONCAT, a, b]
        hconcat l     == cons(eform 'CONCAT, l)
        vconcat(a,b)  == bless [eform 'VCONCAT, a, b]
        vconcat l     == cons(eform 'VCONCAT, l)

        (a:% ~= b:%): % == bless [eform '~=,    a, b]
        a < b       == bless [eform '<,     a, b] 
        a > b       == bless [eform '>,     a, b]
        a <= b      == bless [eform '<=,    a, b]
        a >= b      == bless [eform '>=,    a, b]

        a + b       == bless [eform '+,     a, b]
        a - b       == bless [eform '-,     a, b]
        - a         == bless [eform '-,     a]
        a * b       == bless [eform '*,     a, b]
        a / b       == bless [eform '/,     a, b]
        a ** b      == bless [eform '**,    a, b]
        a div b     == bless [eform 'div,   a, b]
        a rem b     == bless [eform 'rem,   a, b]
        a quo b     == bless [eform 'quo,   a, b]
        a exquo b   == bless [eform 'exquo, a, b]
        a and b     == bless [eform 'and,   a, b]
        a or b      == bless [eform 'or,    a, b]
        not a       == bless [eform 'not,   a]
        SEGMENT(a,b)== bless [eform 'SEGMENT, a, b]
        SEGMENT(a)  == bless [eform 'SEGMENT, a]
        binomial(a,b)== bless [eform 'BINOMIAL, a, b]

        empty() == bless [eform 'NOTHING]

        infix? a ==
            e:$ :=
                %ident? a => a
                %string? a => INTERN$Lisp a
                return false
            not %peq(%property(e,'INFIXOP),%nil)

        elt(a, l) ==
            cons(a, l)
        prefix(a,l)   ==
            not infix? a => cons(a, l)
            hconcat(a, paren commaSeparate l)
        infix(a, l) ==
            null l => empty()
            null rest l => first l
            infix? a => cons(a, l)
            hconcat [first l, a, infix(a, rest l)]
        infix(a,b,c)  ==
            infix? a => bless [a, b, c]
            hconcat [b, a, c]
        postfix(a, b) ==
            hconcat(b, a)

        string a   == bless [eform 'STRING,  a]
        quote  a   == bless [eform 'QUOTE,   a]
        overbar a  == bless [eform 'OVERBAR, a]
        dot a      == super(a, eform '_.)
        prime a    == super(a, eform '_,)
        dot(a,nn)   == (s := new(nn, char "."); super(a, sform s))
        prime(a,nn) == (s := new(nn, char ","); super(a, sform s))

        overlabel(a,b) == bless [eform 'OVERLABEL, a, b]
        box a      == bless [eform 'BOX,     a]
        zag(a,b)   == bless [eform 'ZAG,     a, b]
        root a     == bless [eform 'ROOT,    a]
        root(a,b)  == bless [eform 'ROOT,    a, b]
        over(a,b)  == bless [eform 'OVER,    a, b]
        slash(a,b) == bless [eform 'SLASH,   a, b]
        assign(a,b)== bless [eform '%LET,     a, b]

        label(a,b) == bless [eform 'EQUATNUM, a, b]
        rarrow(a,b)== bless [eform 'RARROW, a, b]
        differentiate(a, nn)==
            zero? nn => a
            nn < 4 => prime(a, nn)
            r := FormatRoman(nn::PositiveInteger)
            s := lowerCase(r::String)
            super(a, paren sform s)

        sum(a)     == bless [eform 'SIGMA,  empty(), a]
        sum(a,b)   == bless [eform 'SIGMA,  b, a]
        sum(a,b,c) == bless [eform 'SIGMA2, b, c, a]
        prod(a)    == bless [eform 'PI,     empty(), a]
        prod(a,b)  == bless [eform 'PI,     b, a]
        prod(a,b,c)== bless [eform 'PI2,    b, c, a]
        int(a)     == bless [eform 'INTSIGN,empty(), empty(), a]
        int(a,b)   == bless [eform 'INTSIGN,b, empty(), a]
        int(a,b,c) == bless [eform 'INTSIGN,b, c, a]

@

\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package NUMFMT NumberFormats>>
<<domain OUTFORM OutputForm>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}