\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra ore.spad} \author{Manuel Bronstein, Jean Della Dora, Stephen M. Watt} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category OREPCAT UnivariateSkewPolynomialCategory} <<category OREPCAT UnivariateSkewPolynomialCategory>>= )abbrev category OREPCAT UnivariateSkewPolynomialCategory ++ Author: Manuel Bronstein, Jean Della Dora, Stephen M. Watt ++ Date Created: 19 October 1993 ++ Date Last Updated: 1 February 1994 ++ Description: ++ This is the category of univariate skew polynomials over an Ore ++ coefficient ring. ++ The multiplication is given by \spad{x a = \sigma(a) x + \delta a}. ++ This category is an evolution of the types ++ MonogenicLinearOperator, OppositeMonogenicLinearOperator, and ++ NonCommutativeOperatorDivision ++ developped by Jean Della Dora and Stephen M. Watt. UnivariateSkewPolynomialCategory(R:Ring): Category == Join(Ring, BiModule(R, R), FullyRetractableTo R) with degree: $ -> NonNegativeInteger ++ degree(l) is \spad{n} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. minimumDegree: $ -> NonNegativeInteger ++ minimumDegree(l) is the smallest \spad{k} such that ++ \spad{a(k) ~= 0} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. leadingCoefficient: $ -> R ++ leadingCoefficient(l) is \spad{a(n)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. reductum: $ -> $ ++ reductum(l) is \spad{l - monomial(a(n),n)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. coefficient: ($, NonNegativeInteger) -> R ++ coefficient(l,k) is \spad{a(k)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. monomial: (R, NonNegativeInteger) -> $ ++ monomial(c,k) produces c times the k-th power of ++ the generating operator, \spad{monomial(1,1)}. coefficients: % -> List R ++ coefficients(l) returns the list of all the nonzero ++ coefficients of l. apply: (%, R, R) -> R ++ apply(p, c, m) returns \spad{p(m)} where the action is ++ given by \spad{x m = c sigma(m) + delta(m)}. if R has CommutativeRing then Algebra R if R has IntegralDomain then exquo: (%, R) -> Union(%, "failed") ++ exquo(l, a) returns the exact quotient of l by a, ++ returning \axiom{"failed"} if this is not possible. monicLeftDivide: (%, %) -> Record(quotient: %, remainder: %) ++ monicLeftDivide(a,b) returns the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ \spad{b} must be monic. ++ This process is called ``left division''. monicRightDivide: (%, %) -> Record(quotient: %, remainder: %) ++ monicRightDivide(a,b) returns the pair \spad{[q,r]} such that ++ \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ \spad{b} must be monic. ++ This process is called ``right division''. if R has GcdDomain then content: % -> R ++ content(l) returns the gcd of all the coefficients of l. primitivePart: % -> % ++ primitivePart(l) returns l0 such that \spad{l = a * l0} ++ for some a in R, and \spad{content(l0) = 1}. if R has Field then leftDivide: (%, %) -> Record(quotient: %, remainder: %) ++ leftDivide(a,b) returns the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ This process is called ``left division''. leftQuotient: (%, %) -> % ++ leftQuotient(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{q} is returned. leftRemainder: (%, %) -> % ++ leftRemainder(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{r} is returned. leftExactQuotient:(%, %) -> Union(%, "failed") ++ leftExactQuotient(a,b) computes the value \spad{q}, if it exists, ++ such that \spad{a = b*q}. leftGcd: (%, %) -> % ++ leftGcd(a,b) computes the value \spad{g} of highest degree ++ such that ++ \spad{a = g*aa} ++ \spad{b = g*bb} ++ for some values \spad{aa} and \spad{bb}. ++ The value \spad{g} is computed using left-division. leftExtendedGcd: (%, %) -> Record(coef1:%, coef2:%, generator:%) ++ leftExtendedGcd(a,b) returns \spad{[c,d]} such that ++ \spad{g = a * c + b * d = leftGcd(a, b)}. rightLcm: (%, %) -> % ++ rightLcm(a,b) computes the value \spad{m} of lowest degree ++ such that \spad{m = a*aa = b*bb} for some values ++ \spad{aa} and \spad{bb}. The value \spad{m} is ++ computed using left-division. rightDivide: (%, %) -> Record(quotient: %, remainder: %) ++ rightDivide(a,b) returns the pair \spad{[q,r]} such that ++ \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ This process is called ``right division''. rightQuotient: (%, %) -> % ++ rightQuotient(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{q} is returned. rightRemainder: (%, %) -> % ++ rightRemainder(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{r} is returned. rightExactQuotient:(%, %) -> Union(%, "failed") ++ rightExactQuotient(a,b) computes the value \spad{q}, if it exists ++ such that \spad{a = q*b}. rightGcd: (%, %) -> % ++ rightGcd(a,b) computes the value \spad{g} of highest degree ++ such that ++ \spad{a = aa*g} ++ \spad{b = bb*g} ++ for some values \spad{aa} and \spad{bb}. ++ The value \spad{g} is computed using right-division. rightExtendedGcd: (%, %) -> Record(coef1:%, coef2:%, generator:%) ++ rightExtendedGcd(a,b) returns \spad{[c,d]} such that ++ \spad{g = c * a + d * b = rightGcd(a, b)}. leftLcm: (%, %) -> % ++ leftLcm(a,b) computes the value \spad{m} of lowest degree ++ such that \spad{m = aa*a = bb*b} for some values ++ \spad{aa} and \spad{bb}. The value \spad{m} is ++ computed using right-division. add coerce(x:R):% == monomial(x, 0) coefficients l == ans:List(R) := empty() while l ~= 0 repeat ans := concat(leadingCoefficient l, ans) l := reductum l ans a:R * y:% == z:% := 0 while y ~= 0 repeat z := z + monomial(a * leadingCoefficient y, degree y) y := reductum y z retractIfCan(x:%):Union(R, "failed") == zero? x or zero? degree x => leadingCoefficient x "failed" if R has IntegralDomain then l exquo a == ans:% := 0 while l ~= 0 repeat (u := (leadingCoefficient(l) exquo a)) case "failed" => return "failed" ans := ans + monomial(u::R, degree l) l := reductum l ans if R has GcdDomain then content l == gcd coefficients l primitivePart l == (l exquo content l)::% if R has Field then leftEEA: (%, %) -> Record(gcd:%, coef1:%, coef2:%, lcm:%) rightEEA: (%, %) -> Record(gcd:%, coef1:%, coef2:%, lcm:%) ncgcd: (%, %, (%, %) -> %) -> % nclcm: (%, %, (%, %) -> Record(gcd:%, coef1:%, coef2:%, lcm:%)) -> % exactQuotient: Record(quotient:%, remainder:%) -> Union(%, "failed") extended: (%, %, (%, %) -> Record(gcd:%, coef1:%, coef2:%, lcm:%)) -> Record(coef1:%, coef2:%, generator:%) leftQuotient(a, b) == leftDivide(a,b).quotient leftRemainder(a, b) == leftDivide(a,b).remainder leftExtendedGcd(a, b) == extended(a, b, leftEEA) rightLcm(a, b) == nclcm(a, b, leftEEA) rightQuotient(a, b) == rightDivide(a,b).quotient rightRemainder(a, b) == rightDivide(a,b).remainder rightExtendedGcd(a, b) == extended(a, b, rightEEA) leftLcm(a, b) == nclcm(a, b, rightEEA) leftExactQuotient(a, b) == exactQuotient leftDivide(a, b) rightExactQuotient(a, b) == exactQuotient rightDivide(a, b) rightGcd(a, b) == ncgcd(a, b, rightRemainder) leftGcd(a, b) == ncgcd(a, b, leftRemainder) exactQuotient qr == (zero?(qr.remainder) => qr.quotient; "failed") -- returns [g = leftGcd(a, b), c, d, l = rightLcm(a, b)] -- such that g := a c + b d leftEEA(a, b) == a0 := a u0:% := v:% := 1 v0:% := u:% := 0 while b ~= 0 repeat qr := leftDivide(a, b) (a, b) := (b, qr.remainder) (u0, u):= (u, u0 - u * qr.quotient) (v0, v):= (v, v0 - v * qr.quotient) [a, u0, v0, a0 * u] ncgcd(a, b, ncrem) == zero? a => b zero? b => a degree a < degree b => ncgcd(b, a, ncrem) while b ~= 0 repeat (a, b) := (b, ncrem(a, b)) a extended(a, b, eea) == zero? a => [0, 1, b] zero? b => [1, 0, a] degree a < degree b => rec := eea(b, a) [rec.coef2, rec.coef1, rec.gcd] rec := eea(a, b) [rec.coef1, rec.coef2, rec.gcd] nclcm(a, b, eea) == zero? a or zero? b => 0 degree a < degree b => nclcm(b, a, eea) rec := eea(a, b) rec.lcm -- returns [g = rightGcd(a, b), c, d, l = leftLcm(a, b)] -- such that g := a c + b d rightEEA(a, b) == a0 := a u0:% := v:% := 1 v0:% := u:% := 0 while b ~= 0 repeat qr := rightDivide(a, b) (a, b) := (b, qr.remainder) (u0, u):= (u, u0 - qr.quotient * u) (v0, v):= (v, v0 - qr.quotient * v) [a, u0, v0, u * a0] @ \section{package APPLYORE ApplyUnivariateSkewPolynomial} <<package APPLYORE ApplyUnivariateSkewPolynomial>>= )abbrev package APPLYORE ApplyUnivariateSkewPolynomial ++ Author: Manuel Bronstein ++ Date Created: 7 December 1993 ++ Date Last Updated: 1 February 1994 ++ Description: ++ \spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate ++ skew polynomials to be applied to appropriate modules. ApplyUnivariateSkewPolynomial(R:Ring, M: LeftModule R, P: UnivariateSkewPolynomialCategory R): with apply: (P, M -> M, M) -> M ++ apply(p, f, m) returns \spad{p(m)} where the action is given ++ by \spad{x m = f(m)}. ++ \spad{f} must be an R-pseudo linear map on M. == add apply(p, f, m) == w:M := 0 mn:M := m for i in 0..degree p repeat w := w + coefficient(p, i) * mn mn := f mn w @ \section{domain AUTOMOR Automorphism} <<domain AUTOMOR Automorphism>>= import Integer import NonNegativeInteger )abbrev domain AUTOMOR Automorphism ++ Author: Manuel Bronstein ++ Date Created: 31 January 1994 ++ Date Last Updated: 31 January 1994 ++ References: ++ Description: ++ Automorphism R is the multiplicative group of automorphisms of R. -- In fact, non-invertible endomorphism are allowed as partial functions. -- This domain is noncanonical in that f*f^{-1} will be the identity -- function but won't be equal to 1. Automorphism(R:Ring): Join(Group, Eltable(R, R)) with morphism: (R -> R) -> % ++ morphism(f) returns the non-invertible morphism given by f. morphism: (R -> R, R -> R) -> % ++ morphism(f, g) returns the invertible morphism given by f, where ++ g is the inverse of f.. morphism: ((R, Integer) -> R) -> % ++ morphism(f) returns the morphism given by \spad{f^n(x) = f(x,n)}. == add Rep == (R, Integer) -> R err: R -> R ident: (R, Integer) -> R iter: (R -> R, NonNegativeInteger, R) -> R iterat: (R -> R, R -> R, Integer, R) -> R apply: (Rep, R, Integer) -> R 1 == per ident err r == error "Morphism is not invertible" ident(r, n) == r f = g == %peq(f,g)$Foreign(Builtin) elt(f, r) == apply(rep f, r, 1) inv f == per apply(rep f, #1, - #2) (f: %) ** (n: Integer) == per apply(rep f, #1, n * #2) coerce(f:%):OutputForm == message("R -> R") morphism(f:(R, Integer) -> R):% == per f morphism(f:R -> R):% == morphism(f, err) morphism(f, g) == per iterat(f, g, #2, #1) apply(f, r, n) == f(r, n) iterat(f, g, n, r) == negative? n => iter(g, (-n)::NonNegativeInteger, r) iter(f, n::NonNegativeInteger, r) iter(f, n, r) == for i in 1..n repeat r := f r r f * g == f = g => f**2 per iterat(f g #1, (inv g)(inv f) #1, #2, #1) @ \section{package OREPCTO UnivariateSkewPolynomialCategoryOps} <<package OREPCTO UnivariateSkewPolynomialCategoryOps>>= )abbrev package OREPCTO UnivariateSkewPolynomialCategoryOps ++ Author: Manuel Bronstein ++ Date Created: 1 February 1994 ++ Date Last Updated: 1 February 1994 ++ Description: ++ \spad{UnivariateSkewPolynomialCategoryOps} provides products and ++ divisions of univariate skew polynomials. -- Putting those operations here rather than defaults in OREPCAT allows -- OREPCAT to be defined independently of sigma and delta. -- MB 2/94 UnivariateSkewPolynomialCategoryOps(R, C): Exports == Implementation where R: Ring C: UnivariateSkewPolynomialCategory R N ==> NonNegativeInteger MOR ==> Automorphism R QUOREM ==> Record(quotient: C, remainder: C) Exports ==> with times: (C, C, MOR, R -> R) -> C ++ times(p, q, sigma, delta) returns \spad{p * q}. ++ \spad{\sigma} and \spad{\delta} are the maps to use. apply: (C, R, R, MOR, R -> R) -> R ++ apply(p, c, m, sigma, delta) returns \spad{p(m)} where the action ++ is given by \spad{x m = c sigma(m) + delta(m)}. if R has IntegralDomain then monicLeftDivide: (C, C, MOR) -> QUOREM ++ monicLeftDivide(a, b, sigma) returns the pair \spad{[q,r]} ++ such that \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ \spad{b} must be monic. ++ This process is called ``left division''. ++ \spad{\sigma} is the morphism to use. monicRightDivide: (C, C, MOR) -> QUOREM ++ monicRightDivide(a, b, sigma) returns the pair \spad{[q,r]} ++ such that \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ \spad{b} must be monic. ++ This process is called ``right division''. ++ \spad{\sigma} is the morphism to use. if R has Field then leftDivide: (C, C, MOR) -> QUOREM ++ leftDivide(a, b, sigma) returns the pair \spad{[q,r]} such ++ that \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ This process is called ``left division''. ++ \spad{\sigma} is the morphism to use. rightDivide: (C, C, MOR) -> QUOREM ++ rightDivide(a, b, sigma) returns the pair \spad{[q,r]} such ++ that \spad{a = q*b + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ This process is called ``right division''. ++ \spad{\sigma} is the morphism to use. Implementation ==> add termPoly: (R, N, C, MOR, R -> R) -> C localLeftDivide : (C, C, MOR, R) -> QUOREM localRightDivide: (C, C, MOR, R) -> QUOREM times(x, y, sigma, delta) == zero? y => 0 z:C := 0 while x ~= 0 repeat z := z + termPoly(leadingCoefficient x, degree x, y, sigma, delta) x := reductum x z termPoly(a, n, y, sigma, delta) == zero? y => 0 (u := subtractIfCan(n, 1)) case "failed" => a * y n1 := u::N z:C := 0 while y ~= 0 repeat m := degree y b := leadingCoefficient y z := z + termPoly(a, n1, monomial(sigma b, m + 1), sigma, delta) + termPoly(a, n1, monomial(delta b, m), sigma, delta) y := reductum y z apply(p, c, x, sigma, delta) == w:R := 0 xn:R := x for i in 0..degree p repeat w := w + coefficient(p, i) * xn xn := c * sigma xn + delta xn w -- localLeftDivide(a, b) returns [q, r] such that a = q b + r -- b1 is the inverse of the leadingCoefficient of b localLeftDivide(a, b, sigma, b1) == zero? b => error "leftDivide: division by 0" zero? a or (n := subtractIfCan(degree(a),(m := degree b))) case "failed" => [0,a] q := monomial((sigma**(-m))(b1 * leadingCoefficient a), n::N) qr := localLeftDivide(a - b * q, b, sigma, b1) [q + qr.quotient, qr.remainder] -- localRightDivide(a, b) returns [q, r] such that a = q b + r -- b1 is the inverse of the leadingCoefficient of b localRightDivide(a, b, sigma, b1) == zero? b => error "rightDivide: division by 0" zero? a or (n := subtractIfCan(degree(a),(m := degree b))) case "failed" => [0,a] q := monomial(leadingCoefficient(a) * (sigma**n) b1, n::N) qr := localRightDivide(a - q * b, b, sigma, b1) [q + qr.quotient, qr.remainder] if R has IntegralDomain then monicLeftDivide(a, b, sigma) == unit?(u := leadingCoefficient b) => localLeftDivide(a, b, sigma, recip(u)::R) error "monicLeftDivide: divisor is not monic" monicRightDivide(a, b, sigma) == unit?(u := leadingCoefficient b) => localRightDivide(a, b, sigma, recip(u)::R) error "monicRightDivide: divisor is not monic" if R has Field then leftDivide(a, b, sigma) == localLeftDivide(a, b, sigma, inv leadingCoefficient b) rightDivide(a, b, sigma) == localRightDivide(a, b, sigma, inv leadingCoefficient b) @ \section{domain ORESUP SparseUnivariateSkewPolynomial} <<domain ORESUP SparseUnivariateSkewPolynomial>>= )abbrev domain ORESUP SparseUnivariateSkewPolynomial ++ Author: Manuel Bronstein ++ Date Created: 19 October 1993 ++ Date Last Updated: September, 2008 ++ Description: ++ This is the domain of sparse univariate skew polynomials over an Ore ++ coefficient field. ++ The multiplication is given by \spad{x a = \sigma(a) x + \delta a}. SparseUnivariateSkewPolynomial(R:Ring, sigma:Automorphism R, delta: R -> R): UnivariateSkewPolynomialCategory R with outputForm: (%, OutputForm) -> OutputForm ++ outputForm(p, x) returns the output form of p using x for the ++ otherwise anonymous variable. == SparseUnivariatePolynomial R add import UnivariateSkewPolynomialCategoryOps(R, %) x:% * y:% == times(x, y, sigma, delta) apply(p, c, r) == apply(p, c, r, sigma, delta) x:% ** n:PositiveInteger == expt(x,n)$RepeatedSquaring(%) x:% ** n:NonNegativeInteger == zero? n => 1 expt(x,n::PositiveInteger)$RepeatedSquaring(%) if R has IntegralDomain then monicLeftDivide(a, b) == monicLeftDivide(a, b, sigma) monicRightDivide(a, b) == monicRightDivide(a, b, sigma) if R has Field then leftDivide(a, b) == leftDivide(a, b, sigma) rightDivide(a, b) == rightDivide(a, b, sigma) @ \section{domain OREUP UnivariateSkewPolynomial} <<domain OREUP UnivariateSkewPolynomial>>= )abbrev domain OREUP UnivariateSkewPolynomial ++ Author: Manuel Bronstein ++ Date Created: 19 October 1993 ++ Date Last Updated: 1 February 1994 ++ Description: ++ This is the domain of univariate skew polynomials over an Ore ++ coefficient field in a named variable. ++ The multiplication is given by \spad{x a = \sigma(a) x + \delta a}. UnivariateSkewPolynomial(x:Symbol, R:Ring, sigma:Automorphism R, delta: R -> R): Join(UnivariateSkewPolynomialCategory R,CoercibleFrom Variable x) == SparseUnivariateSkewPolynomial(R, sigma, delta) add Rep := SparseUnivariateSkewPolynomial(R, sigma, delta) coerce(v:Variable(x)):% == monomial(1, 1) coerce(p:%):OutputForm == outputForm(p, outputForm x)$Rep @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category OREPCAT UnivariateSkewPolynomialCategory>> <<package APPLYORE ApplyUnivariateSkewPolynomial>> <<domain AUTOMOR Automorphism>> <<package OREPCTO UnivariateSkewPolynomialCategoryOps>> <<domain ORESUP SparseUnivariateSkewPolynomial>> <<domain OREUP UnivariateSkewPolynomial>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}