\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra opalg.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain MODOP ModuleOperator} <<domain MODOP ModuleOperator>>= )abbrev domain MODOP ModuleOperator ++ Author: Manuel Bronstein ++ Date Created: 15 May 1990 ++ Date Last Updated: 17 June 1993 ++ Description: ++ Algebra of ADDITIVE operators on a module. ModuleOperator(R: Ring, M:LeftModule(R)): Exports == Implementation where O ==> OutputForm OP ==> BasicOperator FG ==> FreeGroup OP RM ==> Record(coef:R, monom:FG) TERM ==> List RM FAB ==> FreeAbelianGroup TERM OPADJ ==> "%opAdjoint" OPEVAL ==> "%opEval" INVEVAL ==> "%invEval" Exports ==> Join(Ring, RetractableTo R, RetractableTo OP, Eltable(M, M)) with if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has CommutativeRing then Algebra(R) adjoint: $ -> $ ++ adjoint(op) returns the adjoint of the operator \spad{op}. adjoint: ($, $) -> $ ++ adjoint(op1, op2) sets the adjoint of op1 to be op2. ++ op1 must be a basic operator conjug : R -> R ++ conjug(x)should be local but conditional evaluate: ($, M -> M) -> $ ++ evaluate(f, u +-> g u) attaches the map g to f. ++ f must be a basic operator ++ g MUST be additive, i.e. \spad{g(a + b) = g(a) + g(b)} for ++ any \spad{a}, \spad{b} in M. ++ This implies that \spad{g(n a) = n g(a)} for ++ any \spad{a} in M and integer \spad{n > 0}. evaluateInverse: ($, M -> M) -> $ ++ evaluateInverse(x,f) \undocumented **: (OP, Integer) -> $ ++ op**n \undocumented **: ($, Integer) -> $ ++ op**n \undocumented opeval : (OP, M) -> M ++ opeval should be local but conditional makeop : (R, FG) -> $ ++ makeop should be local but conditional Implementation ==> FAB add import NoneFunctions1($) import BasicOperatorFunctions1(M) Rep := FAB inv : TERM -> $ termeval : (TERM, M) -> M rmeval : (RM, M) -> M monomeval: (FG, M) -> M opInvEval: (OP, M) -> M mkop : (R, FG) -> $ termprod0: (Integer, TERM, TERM) -> $ termprod : (Integer, TERM, TERM) -> TERM termcopy : TERM -> TERM trm2O : (Integer, TERM) -> O term2O : TERM -> O rm2O : (R, FG) -> O nocopy : OP -> $ 1 == makeop(1, 1) coerce(n:Integer):$ == n::R::$ coerce(r:R):$ == (zero? r => 0; makeop(r, 1)) coerce(op:OP):$ == nocopy copy op nocopy(op:OP):$ == makeop(1, op::FG) elt(x:$, r:M) == +/[t.exp * termeval(t.gen, r) for t in terms x] rmeval(t, r) == t.coef * monomeval(t.monom, r) termcopy t == [[rm.coef, rm.monom] for rm in t] characteristic == characteristic$R mkop(r, fg) == [[r, fg]$RM]$TERM :: $ evaluate(f, g) == nocopy setProperty(retract(f)@OP,OPEVAL,g pretend None) if R has OrderedSet then makeop(r, fg) == (r >= 0 => mkop(r, fg); - mkop(-r, fg)) else makeop(r, fg) == mkop(r, fg) inv(t:TERM):$ == empty? t => 1 c := first(t).coef m := first(t).monom inv(rest t) * makeop(1, inv m) * (recip(c)::R::$) x:$ ** i:Integer == i = 0 => 1 i > 0 => expt(x,i pretend PositiveInteger)$RepeatedSquaring($) (inv(retract(x)@TERM)) ** (-i) evaluateInverse(f, g) == nocopy setProperty(retract(f)@OP, INVEVAL, g pretend None) coerce(x:$):O == zero? x => (0$R)::O reduce(_+, [trm2O(t.exp, t.gen) for t in terms x])$List(O) trm2O(c, t) == one? c => term2O t c = -1 => - term2O t c::O * term2O t term2O t == reduce(_*, [rm2O(rm.coef, rm.monom) for rm in t])$List(O) rm2O(c, m) == one? c => m::O one? m => c::O c::O * m::O x:$ * y:$ == +/[ +/[termprod0(t.exp * s.exp, t.gen, s.gen) for s in terms y] for t in terms x] termprod0(n, x, y) == n >= 0 => termprod(n, x, y)::$ - (termprod(-n, x, y)::$) termprod(n, x, y) == lc := first(xx := termcopy x) lc.coef := n * lc.coef rm := last xx one?(first(y).coef) => rm.monom := rm.monom * first(y).monom concat!(xx, termcopy rest y) one?(rm.monom) => rm.coef := rm.coef * first(y).coef rm.monom := first(y).monom concat!(xx, termcopy rest y) concat!(xx, termcopy y) if M has ExpressionSpace then opeval(op, r) == (func := property(op, OPEVAL)) case "failed" => kernel(op, r) ((func::None) pretend (M -> M)) r else opeval(op, r) == (func := property(op, OPEVAL)) case "failed" => error "eval: operator has no evaluation function" ((func::None) pretend (M -> M)) r opInvEval(op, r) == (func := property(op, INVEVAL)) case "failed" => error "eval: operator has no inverse evaluation function" ((func::None) pretend (M -> M)) r termeval(t, r) == for rm in reverse t repeat r := rmeval(rm, r) r monomeval(m, r) == for rec in reverse! factors m repeat e := rec.exp g := rec.gen e > 0 => for i in 1..e repeat r := opeval(g, r) e < 0 => for i in 1..(-e) repeat r := opInvEval(g, r) r recip x == (r := retractIfCan(x)@Union(R, "failed")) case "failed" => "failed" (r1 := recip(r::R)) case "failed" => "failed" r1::R::$ retractIfCan(x:$):Union(R, "failed") == (r:= retractIfCan(x)@Union(TERM,"failed")) case "failed" => "failed" empty?(t := r::TERM) => 0$R empty? rest t => rm := first t one?(rm.monom) => rm.coef "failed" "failed" retractIfCan(x:$):Union(OP, "failed") == (r:= retractIfCan(x)@Union(TERM,"failed")) case "failed" => "failed" empty?(t := r::TERM) => "failed" empty? rest t => rm := first t one?(rm.coef) => retractIfCan(rm.monom) "failed" "failed" if R has CommutativeRing then termadj : TERM -> $ rmadj : RM -> $ monomadj : FG -> $ opadj : OP -> $ r:R * x:$ == r::$ * x x:$ * r:R == x * (r::$) adjoint x == +/[t.exp * termadj(t.gen) for t in terms x] rmadj t == conjug(t.coef) * monomadj(t.monom) adjoint(op, adj) == nocopy setProperty(retract(op)@OP, OPADJ, adj::None) termadj t == ans:$ := 1 for rm in t repeat ans := rmadj(rm) * ans ans monomadj m == ans:$ := 1 for rec in factors m repeat ans := (opadj(rec.gen) ** rec.exp) * ans ans opadj op == (adj := property(op, OPADJ)) case "failed" => error "adjoint: operator does not have a defined adjoint" (adj::None) pretend $ if R has conjugate:R -> R then conjug r == conjugate r else conjug r == r @ \section{domain OP Operator} <<domain OP Operator>>= )abbrev domain OP Operator ++ Author: Manuel Bronstein ++ Date Created: 15 May 1990 ++ Date Last Updated: 12 February 1993 ++ Description: ++ Algebra of ADDITIVE operators over a ring. Operator(R: Ring) == ModuleOperator(R,R) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain MODOP ModuleOperator>> <<domain OP Operator>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}