\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra odeef.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package REDORDER ReductionOfOrder} <<package REDORDER ReductionOfOrder>>= )abbrev package REDORDER ReductionOfOrder ++ Author: Manuel Bronstein ++ Date Created: 4 November 1991 ++ Date Last Updated: 3 February 1994 ++ Description: ++ \spadtype{ReductionOfOrder} provides ++ functions for reducing the order of linear ordinary differential equations ++ once some solutions are known. ++ Keywords: differential equation, ODE ReductionOfOrder(F, L): Exports == Impl where F: Field L: LinearOrdinaryDifferentialOperatorCategory F Z ==> Integer A ==> PrimitiveArray F Exports ==> with ReduceOrder: (L, F) -> L ++ ReduceOrder(op, s) returns \spad{op1} such that for any solution ++ \spad{z} of \spad{op1 z = 0}, \spad{y = s \int z} is a solution of ++ \spad{op y = 0}. \spad{s} must satisfy \spad{op s = 0}. ReduceOrder: (L, List F) -> Record(eq:L, op:List F) ++ ReduceOrder(op, [f1,...,fk]) returns \spad{[op1,[g1,...,gk]]} such that ++ for any solution \spad{z} of \spad{op1 z = 0}, ++ \spad{y = gk \int(g_{k-1} \int(... \int(g1 \int z)...)} is a solution ++ of \spad{op y = 0}. Each \spad{fi} must satisfy \spad{op fi = 0}. Impl ==> add ithcoef : (L, Z, A) -> F locals : (A, Z, Z) -> F localbinom: (Z, Z) -> Z diff := D()$L localbinom(j, i) == (j > i => binomial(j, i+1); 0) locals(s, j, i) == (j > i => qelt(s, j - i - 1); 0) ReduceOrder(l:L, sols:List F) == empty? sols => [l, empty()] neweq := ReduceOrder(l, sol := first sols) rec := ReduceOrder(neweq, [diff(s / sol) for s in rest sols]) [rec.eq, concat_!(rec.op, sol)] ithcoef(eq, i, s) == ans:F := 0 while eq ^= 0 repeat j := degree eq ans := ans + localbinom(j, i) * locals(s,j,i) * leadingCoefficient eq eq := reductum eq ans ReduceOrder(eq:L, sol:F) == s:A := new(n := degree eq, 0) -- will contain derivatives of sol si := sol -- will run through the derivatives qsetelt_!(s, 0, si) for i in 1..(n-1)::NonNegativeInteger repeat qsetelt_!(s, i, si := diff si) ans:L := 0 for i in 0..(n-1)::NonNegativeInteger repeat ans := ans + monomial(ithcoef(eq, i, s), i) ans @ \section{package LODEEF ElementaryFunctionLODESolver} <<package LODEEF ElementaryFunctionLODESolver>>= )abbrev package LODEEF ElementaryFunctionLODESolver ++ Author: Manuel Bronstein ++ Date Created: 3 February 1994 ++ Date Last Updated: 9 March 1994 ++ Description: ++ \spad{ElementaryFunctionLODESolver} provides the top-level ++ functions for finding closed form solutions of linear ordinary ++ differential equations and initial value problems. ++ Keywords: differential equation, ODE ElementaryFunctionLODESolver(R, F, L): Exports == Implementation where R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer, LinearlyExplicitRingOver Integer, CharacteristicZero) F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory, PrimitiveFunctionCategory) L: LinearOrdinaryDifferentialOperatorCategory F SY ==> Symbol N ==> NonNegativeInteger K ==> Kernel F V ==> Vector F M ==> Matrix F UP ==> SparseUnivariatePolynomial F RF ==> Fraction UP UPUP==> SparseUnivariatePolynomial RF P ==> SparseMultivariatePolynomial(R, K) P2 ==> SparseMultivariatePolynomial(P, K) LQ ==> LinearOrdinaryDifferentialOperator1 RF REC ==> Record(particular: F, basis: List F) U ==> Union(REC, "failed") ALGOP ==> "%alg" Exports ==> with solve: (L, F, SY) -> U ++ solve(op, g, x) returns either a solution of the ordinary differential ++ equation \spad{op y = g} or "failed" if no non-trivial solution can be ++ found; When found, the solution is returned in the form ++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution and ++ and \spad{[b1,...bm]} are linearly independent solutions of the ++ associated homogenuous equation \spad{op y = 0}. ++ A full basis for the solutions of the homogenuous equation ++ is not always returned, only the solutions which were found; ++ \spad{x} is the dependent variable. solve: (L, F, SY, F, List F) -> Union(F, "failed") ++ solve(op, g, x, a, [y0,...,ym]) returns either the solution ++ of the initial value problem \spad{op y = g, y(a) = y0, y'(a) = y1,...} ++ or "failed" if the solution cannot be found; ++ \spad{x} is the dependent variable. Implementation ==> add import Kovacic(F, UP) import ODETools(F, L) import RationalLODE(F, UP) import RationalRicDE(F, UP) import ODEIntegration(R, F) import ConstantLODE(R, F, L) import IntegrationTools(R, F) import ReductionOfOrder(F, L) import ReductionOfOrder(RF, LQ) import PureAlgebraicIntegration(R, F, L) import FunctionSpacePrimitiveElement(R, F) import LinearSystemMatrixPackage(F, V, V, M) import SparseUnivariatePolynomialFunctions2(RF, F) import FunctionSpaceUnivariatePolynomialFactor(R, F, UP) import LinearOrdinaryDifferentialOperatorFactorizer(F, UP) import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, P, F) upmp : (P, List K) -> P2 downmp : (P2, List K, List P) -> P xpart : (F, SY) -> F smpxpart : (P, SY, List K, List P) -> P multint : (F, List F, SY) -> F ulodo : (L, K) -> LQ firstOrder : (F, F, F, SY) -> REC rfSolve : (L, F, K, SY) -> U ratlogsol : (LQ, List RF, K, SY) -> List F expsols : (LQ, K, SY) -> List F homosolve : (L, LQ, List RF, K, SY) -> List F homosolve1 : (L, List F, K, SY) -> List F norf1 : (L, K, SY, N) -> List F kovode : (LQ, K, SY) -> List F doVarParams: (L, F, List F, SY) -> U localmap : (F -> F, L) -> L algSolve : (L, F, K, List K, SY) -> U palgSolve : (L, F, K, K, SY) -> U lastChance : (L, F, SY) -> U diff := D()$L smpxpart(p, x, l, lp) == downmp(primitivePart upmp(p, l), l, lp) downmp(p, l, lp) == ground eval(p, l, lp) homosolve(lf, op, sols, k, x) == homosolve1(lf, ratlogsol(op,sols,k,x),k,x) -- left hand side has algebraic (not necessarily pure) coefficients algSolve(op, g, k, l, x) == symbolIfCan(kx := ksec(k, l, x)) case SY => palgSolve(op, g, kx, k, x) has?(operator kx, ALGOP) => rec := primitiveElement(kx::F, k::F) z := rootOf(rec.prim) lk:List K := [kx, k] lv:List F := [(rec.pol1) z, (rec.pol2) z] (u := solve(localmap(eval(#1, lk, lv), op), eval(g, lk, lv), x)) case "failed" => "failed" rc := u::REC kz := retract(z)@K [eval(rc.particular, kz, rec.primelt), [eval(f, kz, rec.primelt) for f in rc.basis]] lastChance(op, g, x) doVarParams(eq, g, bas, x) == (u := particularSolution(eq, g, bas, int(#1, x))) case "failed" => lastChance(eq, g, x) [u::F, bas] lastChance(op, g, x) == -- one? degree op => firstOrder(coefficient(op,0), leadingCoefficient op,g,x) (degree op) = 1 => firstOrder(coefficient(op,0), leadingCoefficient op,g,x) "failed" -- solves a0 y + a1 y' = g -- does not check whether there is a solution in the field generated by -- a0, a1 and g firstOrder(a0, a1, g, x) == h := xpart(expint(- a0 / a1, x), x) [h * int((g / h) / a1, x), [h]] -- xpart(f,x) removes any constant not involving x from f xpart(f, x) == l := reverse_! varselect(tower f, x) lp := [k::P for k in l] smpxpart(numer f, x, l, lp) / smpxpart(denom f, x, l, lp) upmp(p, l) == empty? l => p::P2 up := univariate(p, k := first l) l := rest l ans:P2 := 0 while up ^= 0 repeat ans := ans + monomial(upmp(leadingCoefficient up, l), k, degree up) up := reductum up ans -- multint(a, [g1,...,gk], x) returns gk \int(g(k-1) \int(....g1 \int(a))...) multint(a, l, x) == for g in l repeat a := g * xpart(int(a, x), x) a expsols(op, k, x) == -- one? degree op => (degree op) = 1 => firstOrder(multivariate(coefficient(op, 0), k), multivariate(leadingCoefficient op, k), 0, x).basis [xpart(expint(multivariate(h, k), x), x) for h in ricDsolve(op, ffactor)] -- Finds solutions with rational logarithmic derivative ratlogsol(oper, sols, k, x) == bas := [xpart(multivariate(h, k), x) for h in sols] degree(oper) = #bas => bas -- all solutions are found already rec := ReduceOrder(oper, sols) le := expsols(rec.eq, k, x) int:List(F) := [xpart(multivariate(h, k), x) for h in rec.op] concat_!([xpart(multivariate(h, k), x) for h in sols], [multint(e, int, x) for e in le]) homosolve1(oper, sols, k, x) == zero?(n := (degree(oper) - #sols)::N) => sols -- all solutions found rec := ReduceOrder(oper, sols) int:List(F) := [xpart(h, x) for h in rec.op] concat_!(sols, [multint(e, int, x) for e in norf1(rec.eq, k, x, n::N)]) -- if the coefficients are rational functions, then the equation does not -- not have a proper 1st-order right factor over the rational functions norf1(op, k, x, n) == -- one? n => firstOrder(coefficient(op, 0), leadingCoefficient op,0,x).basis (n = 1) => firstOrder(coefficient(op, 0), leadingCoefficient op,0,x).basis -- for order > 2, we check that the coeffs are still rational functions symbolIfCan(kmax vark(coefficients op, x)) case SY => eq := ulodo(op, k) n = 2 => kovode(eq, k, x) eq := last factor1 eq -- eq cannot have order 1 degree(eq) = 2 => empty?(bas := kovode(eq, k, x)) => empty() homosolve1(op, bas, k, x) empty() empty() kovode(op, k, x) == b := coefficient(op, 1) a := coefficient(op, 2) (u := kovacic(coefficient(op, 0), b, a, ffactor)) case "failed" => empty() p := map(multivariate(#1, k), u::UPUP) ba := multivariate(- b / a, k) -- if p has degree 2 (case 2), then it must be squarefree since the -- ode is irreducible over the rational functions, so the 2 roots of p -- are distinct and must yield 2 independent solutions. degree(p) = 2 => [xpart(expint(ba/(2::F) + e, x), x) for e in zerosOf p] -- otherwise take 1 root of p and find the 2nd solution by reduction of order y1 := xpart(expint(ba / (2::F) + zeroOf p, x), x) [y1, y1 * xpart(int(expint(ba, x) / y1**2, x), x)] solve(op:L, g:F, x:SY) == empty?(l := vark(coefficients op, x)) => constDsolve(op, g, x) symbolIfCan(k := kmax l) case SY => rfSolve(op, g, k, x) has?(operator k, ALGOP) => algSolve(op, g, k, l, x) lastChance(op, g, x) ulodo(eq, k) == op:LQ := 0 while eq ^= 0 repeat op := op + monomial(univariate(leadingCoefficient eq, k), degree eq) eq := reductum eq op -- left hand side has rational coefficients rfSolve(eq, g, k, x) == op := ulodo(eq, k) empty? remove_!(k, varselect(kernels g, x)) => -- i.e. rhs is rational rc := ratDsolve(op, univariate(g, k)) rc.particular case "failed" => -- this implies g ^= 0 doVarParams(eq, g, homosolve(eq, op, rc.basis, k, x), x) [multivariate(rc.particular::RF, k), homosolve(eq, op, rc.basis, k, x)] doVarParams(eq, g, homosolve(eq, op, ratDsolve(op, 0).basis, k, x), x) solve(op, g, x, a, y0) == (u := solve(op, g, x)) case "failed" => "failed" hp := h := (u::REC).particular b := (u::REC).basis v:V := new(n := #y0, 0) kx:K := kernel x for i in minIndex v .. maxIndex v for yy in y0 repeat v.i := yy - eval(h, kx, a) h := diff h (sol := particularSolution(map_!(eval(#1,kx,a),wronskianMatrix(b,n)), v)) case "failed" => "failed" for f in b for i in minIndex(s := sol::V) .. repeat hp := hp + s.i * f hp localmap(f, op) == ans:L := 0 while op ^= 0 repeat ans := ans + monomial(f leadingCoefficient op, degree op) op := reductum op ans -- left hand side has pure algebraic coefficients palgSolve(op, g, kx, k, x) == rec := palgLODE(op, g, kx, k, x) -- finds solutions in the coef. field rec.particular case "failed" => doVarParams(op, g, homosolve1(op, rec.basis, k, x), x) [(rec.particular)::F, homosolve1(op, rec.basis, k, x)] @ \section{package ODEEF ElementaryFunctionODESolver} <<package ODEEF ElementaryFunctionODESolver>>= )abbrev package ODEEF ElementaryFunctionODESolver ++ Author: Manuel Bronstein ++ Date Created: 18 March 1991 ++ Date Last Updated: 8 March 1994 ++ Description: ++ \spad{ElementaryFunctionODESolver} provides the top-level ++ functions for finding closed form solutions of ordinary ++ differential equations and initial value problems. ++ Keywords: differential equation, ODE ElementaryFunctionODESolver(R, F): Exports == Implementation where R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer, LinearlyExplicitRingOver Integer, CharacteristicZero) F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory, PrimitiveFunctionCategory) N ==> NonNegativeInteger OP ==> BasicOperator SY ==> Symbol K ==> Kernel F EQ ==> Equation F V ==> Vector F M ==> Matrix F UP ==> SparseUnivariatePolynomial F P ==> SparseMultivariatePolynomial(R, K) LEQ ==> Record(left:UP, right:F) NLQ ==> Record(dx:F, dy:F) REC ==> Record(particular: F, basis: List F) VEC ==> Record(particular: V, basis: List V) ROW ==> Record(index: Integer, row: V, rh: F) SYS ==> Record(mat:M, vec: V) U ==> Union(REC, F, "failed") UU ==> Union(F, "failed") OPDIFF ==> "%diff"::SY Exports ==> with solve: (M, V, SY) -> Union(VEC, "failed") ++ solve(m, v, x) returns \spad{[v_p, [v_1,...,v_m]]} such that ++ the solutions of the system \spad{D y = m y + v} are ++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are ++ constants, and the \spad{v_i's} form a basis for the solutions of ++ \spad{D y = m y}. ++ \spad{x} is the dependent variable. solve: (M, SY) -> Union(List V, "failed") ++ solve(m, x) returns a basis for the solutions of \spad{D y = m y}. ++ \spad{x} is the dependent variable. solve: (List EQ, List OP, SY) -> Union(VEC, "failed") ++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed" ++ or, if the equations form a fist order linear system, a solution ++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a ++ particular solution and \spad{[b_1,...b_m]} are linearly independent ++ solutions of the associated homogenuous system. ++ error if the equations do not form a first order linear system solve: (List F, List OP, SY) -> Union(VEC, "failed") ++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed" ++ or, if the equations form a fist order linear system, a solution ++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a ++ particular solution and \spad{[b_1,...b_m]} are linearly independent ++ solutions of the associated homogenuous system. ++ error if the equations do not form a first order linear system solve: (EQ, OP, SY) -> U ++ solve(eq, y, x) returns either a solution of the ordinary differential ++ equation \spad{eq} or "failed" if no non-trivial solution can be found; ++ If the equation is linear ordinary, a solution is of the form ++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution ++ and \spad{[b1,...bm]} are linearly independent solutions of the ++ associated homogenuous equation \spad{f(x,y) = 0}; ++ A full basis for the solutions of the homogenuous equation ++ is not always returned, only the solutions which were found; ++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of ++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral ++ of the equation for any constant \spad{c}; ++ error if the equation is not one of those 2 forms; solve: (F, OP, SY) -> U ++ solve(eq, y, x) returns either a solution of the ordinary differential ++ equation \spad{eq} or "failed" if no non-trivial solution can be found; ++ If the equation is linear ordinary, a solution is of the form ++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution and ++ and \spad{[b1,...bm]} are linearly independent solutions of the ++ associated homogenuous equation \spad{f(x,y) = 0}; ++ A full basis for the solutions of the homogenuous equation ++ is not always returned, only the solutions which were found; ++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of ++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral ++ of the equation for any constant \spad{c}; solve: (EQ, OP, EQ, List F) -> UU ++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution ++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...} ++ or "failed" if the solution cannot be found; ++ error if the equation is not one linear ordinary or of the form ++ \spad{dy/dx = f(x,y)}; solve: (F, OP, EQ, List F) -> UU ++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution ++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...} ++ or "failed" if the solution cannot be found; ++ error if the equation is not one linear ordinary or of the form ++ \spad{dy/dx = f(x,y)}; Implementation ==> add import ODEIntegration(R, F) import IntegrationTools(R, F) import NonLinearFirstOrderODESolver(R, F) getfreelincoeff : (F, K, SY) -> F getfreelincoeff1: (F, K, List F) -> F getlincoeff : (F, K) -> F getcoeff : (F, K) -> UU parseODE : (F, OP, SY) -> Union(LEQ, NLQ) parseLODE : (F, List K, UP, SY) -> LEQ parseSYS : (List F, List OP, SY) -> Union(SYS, "failed") parseSYSeq : (F, List K, List K, List F, SY) -> Union(ROW, "failed") solve(diffeq:EQ, y:OP, x:SY) == solve(lhs diffeq - rhs diffeq, y, x) solve(leq: List EQ, lop: List OP, x:SY) == solve([lhs eq - rhs eq for eq in leq], lop, x) solve(diffeq:EQ, y:OP, center:EQ, y0:List F) == solve(lhs diffeq - rhs diffeq, y, center, y0) solve(m:M, x:SY) == (u := solve(m, new(nrows m, 0), x)) case "failed" => "failed" u.basis solve(m:M, v:V, x:SY) == Lx := LinearOrdinaryDifferentialOperator(F, diff x) uu := solve(m, v, solve(#1, #2, x)$ElementaryFunctionLODESolver(R, F, Lx))$SystemODESolver(F, Lx) uu case "failed" => "failed" rec := uu::Record(particular: V, basis: M) [rec.particular, [column(rec.basis, i) for i in 1..ncols(rec.basis)]] solve(diffeq:F, y:OP, center:EQ, y0:List F) == a := rhs center kx:K := kernel(x := retract(lhs(center))@SY) (ur := parseODE(diffeq, y, x)) case NLQ => -- not one?(#y0) => error "solve: more than one initial condition!" not ((#y0) = 1) => error "solve: more than one initial condition!" rc := ur::NLQ (u := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed" u::F - eval(u::F, [kx, retract(y(x::F))@K], [a, first y0]) rec := ur::LEQ p := rec.left Lx := LinearOrdinaryDifferentialOperator(F, diff x) op:Lx := 0 while p ^= 0 repeat op := op + monomial(leadingCoefficient p, degree p) p := reductum p solve(op, rec.right, x, a, y0)$ElementaryFunctionLODESolver(R, F, Lx) solve(leq: List F, lop: List OP, x:SY) == (u := parseSYS(leq, lop, x)) case SYS => rec := u::SYS solve(rec.mat, rec.vec, x) error "solve: not a first order linear system" solve(diffeq:F, y:OP, x:SY) == (u := parseODE(diffeq, y, x)) case NLQ => rc := u::NLQ (uu := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed" uu::F rec := u::LEQ p := rec.left Lx := LinearOrdinaryDifferentialOperator(F, diff x) op:Lx := 0 while p ^= 0 repeat op := op + monomial(leadingCoefficient p, degree p) p := reductum p (uuu := solve(op, rec.right, x)$ElementaryFunctionLODESolver(R, F, Lx)) case "failed" => "failed" uuu::REC -- returns [M, v] s.t. the equations are D x = M x + v parseSYS(eqs, ly, x) == (n := #eqs) ^= #ly => "failed" m:M := new(n, n, 0) v:V := new(n, 0) xx := x::F lf := [y xx for y in ly] lk0:List(K) := [retract(f)@K for f in lf] lk1:List(K) := [retract(differentiate(f, x))@K for f in lf] for eq in eqs repeat (u := parseSYSeq(eq,lk0,lk1,lf,x)) case "failed" => return "failed" rec := u::ROW setRow_!(m, rec.index, rec.row) v(rec.index) := rec.rh [m, v] parseSYSeq(eq, l0, l1, lf, x) == l := [k for k in varselect(kernels eq, x) | is?(k, OPDIFF)] empty? l or not empty? rest l or zero?(n := position(k := first l,l1)) => "failed" c := getfreelincoeff1(eq, k, lf) eq := eq - c * k::F v:V := new(#l0, 0) for y in l0 for i in 1.. repeat ci := getfreelincoeff1(eq, y, lf) v.i := - ci / c eq := eq - ci * y::F [n, v, -eq] -- returns either [p, g] where the equation (diffeq) is of the form p(D)(y) = g -- or [p, q] such that the equation (diffeq) is of the form p dx + q dy = 0 parseODE(diffeq, y, x) == f := y(x::F) l:List(K) := [retract(f)@K] n:N := 2 for k in varselect(kernels diffeq, x) | is?(k, OPDIFF) repeat if (m := height k) > n then n := m n := (n - 2)::N -- build a list of kernels in the order [y^(n)(x),...,y''(x),y'(x),y(x)] for i in 1..n repeat l := concat(retract(f := differentiate(f, x))@K, l) k:K -- #$^#& compiler requires this line and the next one too... c:F while not(empty? l) and zero?(c := getlincoeff(diffeq, k := first l)) repeat l := rest l empty? l or empty? rest l => error "parseODE: equation has order 0" diffeq := diffeq - c * (k::F) ny := name y l := rest l height(k) > 3 => parseLODE(diffeq, l, monomial(c, #l), ny) (u := getcoeff(diffeq, k := first l)) case "failed" => [diffeq, c] eqrhs := (d := u::F) * (k::F) - diffeq freeOf?(eqrhs, ny) and freeOf?(c, ny) and freeOf?(d, ny) => [monomial(c, 1) + d::UP, eqrhs] [diffeq, c] -- returns [p, g] where the equation (diffeq) is of the form p(D)(y) = g parseLODE(diffeq, l, p, y) == not freeOf?(leadingCoefficient p, y) => error "parseLODE: not a linear ordinary differential equation" d := degree(p)::Integer - 1 for k in l repeat p := p + monomial(c := getfreelincoeff(diffeq, k, y), d::N) d := d - 1 diffeq := diffeq - c * (k::F) freeOf?(diffeq, y) => [p, - diffeq] error "parseLODE: not a linear ordinary differential equation" getfreelincoeff(f, k, y) == freeOf?(c := getlincoeff(f, k), y) => c error "getfreelincoeff: not a linear ordinary differential equation" getfreelincoeff1(f, k, ly) == c := getlincoeff(f, k) for y in ly repeat not freeOf?(c, y) => error "getfreelincoeff: not a linear ordinary differential equation" c getlincoeff(f, k) == (u := getcoeff(f, k)) case "failed" => error "getlincoeff: not an appropriate ordinary differential equation" u::F getcoeff(f, k) == (r := retractIfCan(univariate(denom f, k))@Union(P, "failed")) case "failed" or degree(p := univariate(numer f, k)) > 1 => "failed" coefficient(p, 1) / (r::P) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- Compile order for the differential equation solver: -- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad -- kovacic.spad lodof.spad odeef.spad <<package REDORDER ReductionOfOrder>> <<package LODEEF ElementaryFunctionLODESolver>> <<package ODEEF ElementaryFunctionODESolver>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}