\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra odealg.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package ODESYS SystemODESolver} <<package ODESYS SystemODESolver>>= )abbrev package ODESYS SystemODESolver ++ Author: Manuel Bronstein ++ Date Created: 11 June 1991 ++ Date Last Updated: 13 April 1994 ++ Description: SystemODESolver provides tools for triangulating ++ and solving some systems of linear ordinary differential equations. ++ Keywords: differential equation, ODE, system SystemODESolver(F, LO): Exports == Implementation where F : Field LO: LinearOrdinaryDifferentialOperatorCategory F N ==> NonNegativeInteger Z ==> Integer MF ==> Matrix F M ==> Matrix LO V ==> Vector F UF ==> Union(F, "failed") UV ==> Union(V, "failed") REC ==> Record(mat: M, vec: V) FSL ==> Record(particular: UF, basis: List F) VSL ==> Record(particular: UV, basis: List V) SOL ==> Record(particular: F, basis: List F) USL ==> Union(SOL, "failed") ER ==> Record(C: MF, g: V, eq: LO, rh: F) Exports ==> with triangulate: (MF, V) -> Record(A:MF, eqs: List ER) ++ triangulate(M,v) returns ++ \spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} ++ such that under the change of variable \spad{y = A z}, the first ++ order linear system \spad{D y = M y + v} is uncoupled as ++ \spad{D z_i = C_i z_i + g_i} and each \spad{C_i} is a companion ++ matrix corresponding to the scalar equation \spad{L_i z_j = h_i}. triangulate: (M, V) -> REC ++ triangulate(m, v) returns \spad{[m_0, v_0]} such that \spad{m_0} ++ is upper triangular and the system \spad{m_0 x = v_0} is equivalent ++ to \spad{m x = v}. solve: (MF,V,(LO,F)->USL) -> Union(Record(particular:V, basis:MF), "failed") ++ solve(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such that ++ the solutions in \spad{F} of the system \spad{D x = m x + v} are ++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are ++ constants, and the \spad{v_i's} form a basis for the solutions of ++ \spad{D x = m x}. ++ Argument \spad{solve} is a function for solving a single linear ++ ordinary differential equation in \spad{F}. solveInField: (M, V, (LO, F) -> FSL) -> VSL ++ solveInField(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such that ++ the solutions in \spad{F} of the system \spad{m x = v} are ++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are ++ constants, and the \spad{v_i's} form a basis for the solutions of ++ \spad{m x = 0}. ++ Argument \spad{solve} is a function for solving a single linear ++ ordinary differential equation in \spad{F}. Implementation ==> add import PseudoLinearNormalForm F applyLodo : (M, Z, V, N) -> F applyLodo0 : (M, Z, Matrix F, Z, N) -> F backsolve : (M, V, (LO, F) -> FSL) -> VSL firstnonzero: (M, Z) -> Z FSL2USL : FSL -> USL M2F : M -> Union(MF, "failed") diff := D()$LO solve(mm, v, solve) == rec := triangulate(mm, v) sols:List(SOL) := empty() for e in rec.eqs repeat (u := solve(e.eq, e.rh)) case "failed" => return "failed" sols := concat(u::SOL, sols) n := nrows(rec.A) -- dimension of original vectorspace k:N := 0 -- sum of sizes of visited companionblocks i:N := 0 -- number of companionblocks m:N := 0 -- number of Solutions part:V := new(n, 0) -- count first the different solutions for sol in sols repeat m := m + count(#1 ~= 0, sol.basis)$List(F) SolMatrix:MF := new(n, m, 0) m := 0 for sol in reverse! sols repeat i := i+1 er := rec.eqs.i nn := #(er.g) -- size of active companionblock for s in sol.basis repeat solVec:V := new(n, 0) -- compute corresponding solution base with recursion (24) solVec(k+1) := s for l in 2..nn repeat solVec(k+l) := diff solVec(k+l-1) m := m+1 setColumn!(SolMatrix, m, solVec) -- compute with (24) the corresponding components of the part. sol. part(k+1) := sol.particular for l in 2..nn repeat part(k+l) := diff part(k+l-1) - (er.g)(l-1) k := k+nn -- transform these values back to the original system [rec.A * part, rec.A * SolMatrix] triangulate(m:MF, v:V) == k:N := 0 -- sum of companion-dimensions rat := normalForm(m, 1, - diff #1) l := companionBlocks(rat.R, rat.Ainv * v) ler:List(ER) := empty() for er in l repeat n := nrows(er.C) -- dimension of this companion vectorspace op:LO := 0 -- compute homogeneous equation for j in 0..n-1 repeat op := op + monomial((er.C)(n, j + 1), j) op := monomial(1, n) - op sum:V := new(n::N, 0) -- compute inhomogen Vector (25) for j in 1..n-1 repeat sum(j+1) := diff(sum j) + (er.g) j h0:F := 0 -- compute inhomogenity (26) for j in 1..n repeat h0 := h0 - (er.C)(n, j) * sum j h0 := h0 + diff(sum n) + (er.g) n ler := concat([er.C, er.g, op, h0], ler) k := k + n [rat.A, ler] -- like solveInField, but expects a system already triangularized backsolve(m, v, solve) == part:V r := maxRowIndex m offset := minIndex v - (mr := minRowIndex m) while r >= mr and every?(zero?, row(m, r))$Vector(LO) repeat r := r - 1 r < mr => error "backsolve: system has a 0 matrix" (c := firstnonzero(m, r)) ~= maxColIndex m => error "backsolve: undetermined system" rec := solve(m(r, c), v(r + offset)) dim := (r - mr + 1)::N if (part? := ((u := rec.particular) case F)) then part := new(dim, 0) -- particular solution part(r + offset) := u::F -- hom is the basis for the homogeneous solutions, each column is a solution hom:Matrix(F) := new(dim, #(rec.basis), 0) for i in minColIndex hom .. maxColIndex hom for b in rec.basis repeat hom(r, i) := b n:N := 1 -- number of equations already solved while r > mr repeat r := r - 1 c := c - 1 firstnonzero(m, r) ~= c => error "backsolve: undetermined system" positive? degree(eq := m(r, c)) => error "backsolve: pivot of order > 0" a := leadingCoefficient(eq)::F if part? then part(r + offset) := (v(r + offset) - applyLodo(m, r, part, n)) / a for i in minColIndex hom .. maxColIndex hom repeat hom(r, i) := - applyLodo0(m, r, hom, i, n) n := n + 1 bas:List(V) := [column(hom,i) for i in minColIndex hom..maxColIndex hom] part? => [part, bas] ["failed", bas] solveInField(m, v, solve) == ((n := nrows m) = ncols m) and ((u := M2F(diagonalMatrix [diff for i in 1..n] - m)) case MF) => (uu := solve(u::MF, v, FSL2USL solve(#1, #2))) case "failed" => ["failed", empty()] rc := uu::Record(particular:V, basis:MF) [rc.particular, [column(rc.basis, i) for i in 1..ncols(rc.basis)]] rec := triangulate(m, v) backsolve(rec.mat, rec.vec, solve) M2F m == mf:MF := new(nrows m, ncols m, 0) for i in minRowIndex m .. maxRowIndex m repeat for j in minColIndex m .. maxColIndex m repeat (u := retractIfCan(m(i, j))@Union(F, "failed")) case "failed" => return "failed" mf(i, j) := u::F mf FSL2USL rec == rec.particular case "failed" => "failed" [rec.particular::F, rec.basis] -- returns the index of the first nonzero entry in row r of m firstnonzero(m, r) == for c in minColIndex m .. maxColIndex m repeat m(r, c) ~= 0 => return c error "firstnonzero: zero row" -- computes +/[m(r, i) v(i) for i ranging over the last n columns of m] applyLodo(m, r, v, n) == ans:F := 0 c := maxColIndex m cv := maxIndex v for i in 1..n repeat ans := ans + m(r, c) (v cv) c := c - 1 cv := cv - 1 ans -- computes +/[m(r, i) mm(i, c) for i ranging over the last n columns of m] applyLodo0(m, r, mm, c, n) == ans: F := 0 rr := maxRowIndex mm cc := maxColIndex m for i in 1..n repeat ans := ans + m(r, cc) mm(rr, c) cc := cc - 1 rr := rr - 1 ans triangulate(m:M, v:V) == x := copy m w := copy v nrows := maxRowIndex x ncols := maxColIndex x minr := i := minRowIndex x offset := minIndex w - minr for j in minColIndex x .. ncols repeat if i > nrows then leave x rown := minr - 1 for k in i .. nrows repeat if (x(k, j) ~= 0) and ((rown = minr - 1) or degree x(k,j) < degree x(rown,j)) then rown := k rown = minr - 1 => "enuf" x := swapRows!(x, i, rown) swap!(w, i + offset, rown + offset) for k in i+1 .. nrows | x(k, j) ~= 0 repeat l := rightLcm(x(i,j), x(k,j)) a := rightQuotient(l, x(i, j)) b := rightQuotient(l, x(k, j)) -- l = a x(i,j) = b x(k,j) for k1 in j+1 .. ncols repeat x(k, k1) := a * x(i, k1) - b * x(k, k1) x(k, j) := 0 w(k + offset) := a(w(i + offset)) - b(w(k + offset)) i := i+1 [x, w] @ \section{package ODERED ReduceLODE} <<package ODERED ReduceLODE>>= )abbrev package ODERED ReduceLODE ++ Author: Manuel Bronstein ++ Date Created: 19 August 1991 ++ Date Last Updated: 11 April 1994 ++ Description: Elimination of an algebraic from the coefficentss ++ of a linear ordinary differential equation. ReduceLODE(F, L, UP, A, LO): Exports == Implementation where F : Field L : LinearOrdinaryDifferentialOperatorCategory F UP: UnivariatePolynomialCategory F A : MonogenicAlgebra(F, UP) LO: LinearOrdinaryDifferentialOperatorCategory A V ==> Vector F M ==> Matrix L Exports ==> with reduceLODE: (LO, A) -> Record(mat:M, vec:V) ++ reduceLODE(op, g) returns \spad{[m, v]} such that ++ any solution in \spad{A} of \spad{op z = g} ++ is of the form \spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where ++ the \spad{b_i's} are the basis of \spad{A} over \spad{F} returned ++ by \spadfun{basis}() from \spad{A}, and the \spad{z_i's} satisfy the ++ differential system \spad{M.z = v}. Implementation ==> add matF2L: Matrix F -> M diff := D()$L -- coerces a matrix of elements of F into a matrix of (order 0) L.O.D.O's matF2L m == map(#1::L, m)$MatrixCategoryFunctions2(F, V, V, Matrix F, L, Vector L, Vector L, M) -- This follows the algorithm and notation of -- "The Risch Differential Equation on an Algebraic Curve", M. Bronstein, -- in 'Proceedings of ISSAC '91', Bonn, BRD, ACM Press, pp.241-246, July 1991. reduceLODE(l, g) == n := rank()$A -- md is the basic differential matrix (D x I + Dy) md := matF2L transpose derivationCoordinates(basis(), diff #1) for i in minRowIndex md .. maxRowIndex md for j in minColIndex md .. maxColIndex md repeat md(i, j) := diff + md(i, j) -- mdi will go through the successive powers of md mdi := copy md sys := matF2L(transpose regularRepresentation coefficient(l, 0)) for i in 1..degree l repeat sys := sys + matF2L(transpose regularRepresentation coefficient(l, i)) * mdi mdi := md * mdi [sys, coordinates g] @ \section{package ODEPAL PureAlgebraicLODE} <<package ODEPAL PureAlgebraicLODE>>= )abbrev package ODEPAL PureAlgebraicLODE ++ Author: Manuel Bronstein ++ Date Created: 21 August 1991 ++ Date Last Updated: 3 February 1994 ++ Description: In-field solution of an linear ordinary differential equation, ++ pure algebraic case. PureAlgebraicLODE(F, UP, UPUP, R): Exports == Implementation where F : Join(Field, CharacteristicZero, RetractableTo Integer, RetractableTo Fraction Integer) UP : UnivariatePolynomialCategory F UPUP: UnivariatePolynomialCategory Fraction UP R : FunctionFieldCategory(F, UP, UPUP) RF ==> Fraction UP V ==> Vector RF U ==> Union(R, "failed") REC ==> Record(particular: Union(RF, "failed"), basis: List RF) L ==> LinearOrdinaryDifferentialOperator1 R LQ ==> LinearOrdinaryDifferentialOperator1 RF Exports ==> with algDsolve: (L, R) -> Record(particular: U, basis: List R) ++ algDsolve(op, g) returns \spad{["failed", []]} if the equation ++ \spad{op y = g} has no solution in \spad{R}. Otherwise, it returns ++ \spad{[f, [y1,...,ym]]} where \spad{f} is a particular rational ++ solution and the \spad{y_i's} form a basis for the solutions in ++ \spad{R} of the homogeneous equation. Implementation ==> add import RationalLODE(F, UP) import SystemODESolver(RF, LQ) import ReduceLODE(RF, LQ, UPUP, R, L) algDsolve(l, g) == rec := reduceLODE(l, g) sol := solveInField(rec.mat, rec.vec, ratDsolve) bas:List(R) := [represents v for v in sol.basis] (u := sol.particular) case V => [represents(u::V), bas] ["failed", bas] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- Compile order for the differential equation solver: -- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad <<package ODESYS SystemODESolver>> <<package ODERED ReduceLODE>> <<package ODEPAL PureAlgebraicLODE>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}