\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra oct.spad} \author{Robert Wisbauer, Johannes Grabmeier} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category OC OctonionCategory} <<category OC OctonionCategory>>= )abbrev category OC OctonionCategory ++ Author: R. Wisbauer, J. Grabmeier ++ Date Created: 05 September 1990 ++ Date Last Updated: 19 September 1990 ++ Basic Operations: _+, _*, octon, real, imagi, imagj, imagk, ++ imagE, imagI, imagJ, imagK ++ Related Constructors: QuaternionCategory ++ Also See: ++ AMS Classifications: ++ Keywords: octonion, non-associative algebra, Cayley-Dixon ++ References: e.g. I.L Kantor, A.S. Solodovnikov: ++ Hypercomplex Numbers, Springer Verlag Heidelberg, 1989, ++ ISBN 0-387-96980-2 ++ Description: ++ OctonionCategory gives the categorial frame for the ++ octonions, and eight-dimensional non-associative algebra, ++ doubling the the quaternions in the same way as doubling ++ the Complex numbers to get the quaternions. -- Examples: octonion.input OctonionCategory(R: CommutativeRing): Category == -- we are cheating a little bit, algebras in \Language{} -- are mainly considered to be associative, but that's not -- an attribute and we can't guarantee that there is no piece -- of code which implicitly -- uses this. In a later version we shall properly combine -- all this code in the context of general, non-associative -- algebras, which are meanwhile implemented in \Language{} Join(Algebra R, FullyRetractableTo R, FullyEvalableOver R) with conjugate: % -> % ++ conjugate(o) negates the imaginary parts i,j,k,E,I,J,K of octonian o. real: % -> R ++ real(o) extracts real part of octonion o. imagi: % -> R ++ imagi(o) extracts the i part of octonion o. imagj: % -> R ++ imagj(o) extracts the j part of octonion o. imagk: % -> R ++ imagk(o) extracts the k part of octonion o. imagE: % -> R ++ imagE(o) extracts the imaginary E part of octonion o. imagI: % -> R ++ imagI(o) extracts the imaginary I part of octonion o. imagJ: % -> R ++ imagJ(o) extracts the imaginary J part of octonion o. imagK: % -> R ++ imagK(o) extracts the imaginary K part of octonion o. norm: % -> R ++ norm(o) returns the norm of an octonion, equal to ++ the sum of the squares ++ of its coefficients. octon: (R,R,R,R,R,R,R,R) -> % ++ octon(re,ri,rj,rk,rE,rI,rJ,rK) constructs an octonion ++ from scalars. if R has Finite then Finite if R has OrderedSet then OrderedSet if R has ConvertibleTo InputForm then ConvertibleTo InputForm if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has RealNumberSystem then abs: % -> R ++ abs(o) computes the absolute value of an octonion, equal to ++ the square root of the \spadfunFrom{norm}{Octonion}. if R has IntegerNumberSystem then rational? : % -> Boolean ++ rational?(o) tests if o is rational, i.e. that all seven ++ imaginary parts are 0. rational : % -> Fraction Integer ++ rational(o) returns the real part if all seven ++ imaginary parts are 0. ++ Error: if o is not rational. rationalIfCan: % -> Union(Fraction Integer, "failed") ++ rationalIfCan(o) returns the real part if ++ all seven imaginary parts are 0, and "failed" otherwise. if R has Field then inv : % -> % ++ inv(o) returns the inverse of o if it exists. add characteristic == characteristic$R conjugate x == octon(real x, - imagi x, - imagj x, - imagk x, - imagE x,_ - imagI x, - imagJ x, - imagK x) map(fn, x) == octon(fn real x,fn imagi x,fn imagj x,fn imagk x, fn imagE x,_ fn imagI x, fn imagJ x,fn imagK x) norm x == real x * real x + imagi x * imagi x + _ imagj x * imagj x + imagk x * imagk x + _ imagE x * imagE x + imagI x * imagI x + _ imagJ x * imagJ x + imagK x * imagK x x = y == (real x = real y) and (imagi x = imagi y) and _ (imagj x = imagj y) and (imagk x = imagk y) and _ (imagE x = imagE y) and (imagI x = imagI y) and _ (imagJ x = imagJ y) and (imagK x = imagK y) x + y == octon(real x + real y, imagi x + imagi y,_ imagj x + imagj y, imagk x + imagk y,_ imagE x + imagE y, imagI x + imagI y,_ imagJ x + imagJ y, imagK x + imagK y) - x == octon(- real x, - imagi x, - imagj x, - imagk x,_ - imagE x, - imagI x, - imagJ x, - imagK x) r:R * x:% == octon(r * real x, r * imagi x, r * imagj x, r * imagk x,_ r * imagE x, r * imagI x, r * imagJ x, r * imagK x) n:Integer * x:% == octon(n * real x, n * imagi x, n * imagj x, n * imagk x,_ n * imagE x, n * imagI x, n * imagJ x, n * imagK x) coerce(r:R) == octon(r,0$R,0$R,0$R,0$R,0$R,0$R,0$R) coerce(n:Integer) == octon(n :: R,0$R,0$R,0$R,0$R,0$R,0$R,0$R) zero? x == zero? real x and zero? imagi x and _ zero? imagj x and zero? imagk x and _ zero? imagE x and zero? imagI x and _ zero? imagJ x and zero? imagK x retract(x):R == not (zero? imagi x and zero? imagj x and zero? imagk x and _ zero? imagE x and zero? imagI x and zero? imagJ x and zero? imagK x)=> error "Cannot retract octonion." real x retractIfCan(x):Union(R,"failed") == not (zero? imagi x and zero? imagj x and zero? imagk x and _ zero? imagE x and zero? imagI x and zero? imagJ x and zero? imagK x)=> "failed" real x coerce(x:%):OutputForm == part,z : OutputForm y : % zero? x => (0$R) :: OutputForm not zero?(real x) => y := octon(0$R,imagi(x),imagj(x),imagk(x),imagE(x), imagI(x),imagJ(x),imagK(x)) zero? y => real(x) :: OutputForm (real(x) :: OutputForm) + (y :: OutputForm) -- we know that the real part is 0 not zero?(imagi(x)) => y := octon(0$R,0$R,imagj(x),imagk(x),imagE(x), imagI(x),imagJ(x),imagK(x)) z := part := 'i::OutputForm one? imagi(x) => part (imagi(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part and i part are 0 not zero?(imagj(x)) => y := octon(0$R,0$R,0$R,imagk(x),imagE(x), imagI(x),imagJ(x),imagK(x)) z := part := 'j::OutputForm one? imagj(x) => part (imagj(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part and i and j parts are 0 not zero?(imagk(x)) => y := octon(0$R,0$R,0$R,0$R,imagE(x), imagI(x),imagJ(x),imagK(x)) z := part := 'k::OutputForm one? imagk(x) => part (imagk(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part,i,j,k parts are 0 not zero?(imagE(x)) => y := octon(0$R,0$R,0$R,0$R,0$R, imagI(x),imagJ(x),imagK(x)) z := part := 'E::OutputForm one? imagE(x) => part (imagE(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part,i,j,k,E parts are 0 not zero?(imagI(x)) => y := octon(0$R,0$R,0$R,0$R,0$R,0$R,imagJ(x),imagK(x)) z := part := 'I::OutputForm one? imagI(x) => part (imagI(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part,i,j,k,E,I parts are 0 not zero?(imagJ(x)) => y := octon(0$R,0$R,0$R,0$R,0$R,0$R,0$R,imagK(x)) z := part := 'J::OutputForm one? imagJ(x) => part (imagJ(x) :: OutputForm) * part zero? y => z z + (y :: OutputForm) -- we know that the real part,i,j,k,E,I,J parts are 0 part := 'K::OutputForm one? imagK(x) => part (imagK(x) :: OutputForm) * part if R has Field then inv x == (norm x) = 0 => error "This octonion is not invertible." (inv norm x) * conjugate x if R has ConvertibleTo InputForm then convert(x:%):InputForm == l : List InputForm := [convert("octon" :: Symbol), convert(real x)$R, convert(imagi x)$R, convert(imagj x)$R,_ convert(imagk x)$R, convert(imagE x)$R,_ convert(imagI x)$R, convert(imagJ x)$R,_ convert(imagK x)$R] convert(l)$InputForm if R has OrderedSet then x < y == real x = real y => imagi x = imagi y => imagj x = imagj y => imagk x = imagk y => imagE x = imagE y => imagI x = imagI y => imagJ x = imagJ y => imagK x < imagK y imagJ x < imagJ y imagI x < imagI y imagE x < imagE y imagk x < imagk y imagj x < imagj y imagi x < imagi y real x < real y if R has RealNumberSystem then abs x == sqrt norm x if R has IntegerNumberSystem then rational? x == (zero? imagi x) and (zero? imagj x) and (zero? imagk x) and _ (zero? imagE x) and (zero? imagI x) and (zero? imagJ x) and _ (zero? imagK x) rational x == rational? x => rational real x error "Not a rational number" rationalIfCan x == rational? x => rational real x "failed" @ \section{domain OCT Octonion} <<domain OCT Octonion>>= )abbrev domain OCT Octonion ++ Author: R. Wisbauer, J. Grabmeier ++ Date Created: 05 September 1990 ++ Date Last Updated: 20 September 1990 ++ Basic Operations: _+,_*,octon,image,imagi,imagj,imagk, ++ imagE,imagI,imagJ,imagK ++ Related Constructors: Quaternion ++ Also See: AlgebraGivenByStructuralConstants ++ AMS Classifications: ++ Keywords: octonion, non-associative algebra, Cayley-Dixon ++ References: e.g. I.L Kantor, A.S. Solodovnikov: ++ Hypercomplex Numbers, Springer Verlag Heidelberg, 1989, ++ ISBN 0-387-96980-2 ++ Description: ++ Octonion implements octonions (Cayley-Dixon algebra) over a ++ commutative ring, an eight-dimensional non-associative ++ algebra, doubling the quaternions in the same way as doubling ++ the complex numbers to get the quaternions ++ the main constructor function is {\em octon} which takes 8 ++ arguments: the real part, the i imaginary part, the j ++ imaginary part, the k imaginary part, (as with quaternions) ++ and in addition the imaginary parts E, I, J, K. -- Examples: octonion.input Octonion(R:CommutativeRing): export == impl where QR ==> Quaternion R export ==> Join(OctonionCategory R, FullyRetractableTo QR) with octon: (QR,QR) -> % ++ octon(qe,qE) constructs an octonion from two quaternions ++ using the relation {\em O = Q + QE}. impl ==> add Rep := Record(e: QR,E: QR) 0 == [0,0] 1 == [1,0] a,b,c,d,f,g,h,i : R p,q : QR x,y : % real x == real (x.e) imagi x == imagI (x.e) imagj x == imagJ (x.e) imagk x == imagK (x.e) imagE x == real (x.E) imagI x == imagI (x.E) imagJ x == imagJ (x.E) imagK x == imagK (x.E) octon(a,b,c,d,f,g,h,i) == [quatern(a,b,c,d)$QR,quatern(f,g,h,i)$QR] octon(p,q) == [p,q] coerce(q) == [q,0$QR] retract(x):QR == not(zero? imagE x and zero? imagI x and zero? imagJ x and zero? imagK x)=> error "Cannot retract octonion to quaternion." quatern(real x, imagi x,imagj x, imagk x)$QR retractIfCan(x):Union(QR,"failed") == not(zero? imagE x and zero? imagI x and zero? imagJ x and zero? imagK x)=> "failed" quatern(real x, imagi x,imagj x, imagk x)$QR x * y == [x.e*y.e-(conjugate y.E)*x.E, y.E*x.e + x.E*(conjugate y.e)] @ \section{package OCTCT2 OctonionCategoryFunctions2} <<package OCTCT2 OctonionCategoryFunctions2>>= )abbrev package OCTCT2 OctonionCategoryFunctions2 --% OctonionCategoryFunctions2 ++ Author: Johannes Grabmeier ++ Date Created: 10 September 1990 ++ Date Last Updated: 10 September 1990 ++ Basic Operations: map ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: octonion, non-associative algebra, Cayley-Dixon ++ References: ++ Description: ++ OctonionCategoryFunctions2 implements functions between ++ two octonion domains defined over different rings. ++ The function map is used ++ to coerce between octonion types. OctonionCategoryFunctions2(OR,R,OS,S) : Exports == Implementation where R : CommutativeRing S : CommutativeRing OR : OctonionCategory R OS : OctonionCategory S Exports == with map: (R -> S, OR) -> OS ++ map(f,u) maps f onto the component parts of the octonion ++ u. Implementation == add map(fn : R -> S, u : OR): OS == octon(fn real u, fn imagi u, fn imagj u, fn imagk u,_ fn imagE u, fn imagI u, fn imagJ u, fn imagK u)$OS @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category OC OctonionCategory>> <<domain OCT Octonion>> <<package OCTCT2 OctonionCategoryFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}