\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra numsolve.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package INFSP InnerNumericFloatSolvePackage} <<package INFSP InnerNumericFloatSolvePackage>>= )abbrev package INFSP InnerNumericFloatSolvePackage ++ Author: P. Gianni ++ Date Created: January 1990 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is an internal package ++ for computing approximate solutions to systems of polynomial equations. ++ The parameter K specifies the coefficient field of the input polynomials ++ and must be either \spad{Fraction(Integer)} or \spad{Complex(Fraction Integer)}. ++ The parameter F specifies where the solutions must lie and can ++ be one of the following: \spad{Float}, \spad{Fraction(Integer)}, \spad{Complex(Float)}, ++ \spad{Complex(Fraction Integer)}. The last parameter specifies the type ++ of the precision operand and must be either \spad{Fraction(Integer)} or \spad{Float}. InnerNumericFloatSolvePackage(K,F,Par): Cat == Cap where F : Field -- this is the field where the answer will be K : GcdDomain -- type of the input Par : Join(Field, OrderedRing ) -- it will be NF or RN I ==> Integer NNI ==> NonNegativeInteger P ==> Polynomial EQ ==> Equation L ==> List SUP ==> SparseUnivariatePolynomial RN ==> Fraction Integer NF ==> Float CF ==> Complex Float GI ==> Complex Integer GRN ==> Complex RN SE ==> Symbol RFI ==> Fraction P I Cat == with innerSolve1 : (SUP K,Par) -> L F ++ innerSolve1(up,eps) returns the list of the zeros ++ of the univariate polynomial up with precision eps. innerSolve1 : (P K,Par) -> L F ++ innerSolve1(p,eps) returns the list of the zeros ++ of the polynomial p with precision eps. innerSolve : (L P K,L P K,L SE,Par) -> L L F ++ innerSolve(lnum,lden,lvar,eps) returns a list of ++ solutions of the system of polynomials lnum, with ++ the side condition that none of the members of lden ++ vanish identically on any solution. Each solution ++ is expressed as a list corresponding to the list of ++ variables in lvar and with precision specified by eps. makeEq : (L F,L SE) -> L EQ P F ++ makeEq(lsol,lvar) returns a list of equations formed ++ by corresponding members of lvar and lsol. Cap == add ------ Local Functions ------ isGeneric? : (L P K,L SE) -> Boolean evaluate : (P K,SE,SE,F) -> F numeric : K -> F oldCoord : (L F,L I) -> L F findGenZeros : (L P K,L SE,Par) -> L L F failPolSolve : (L P K,L SE) -> Union(L L P K,"failed") numeric(r:K):F == K is I => F is Float => r::I::Float F is RN => r::I::RN F is CF => r::I::CF F is GRN => r::I::GRN K is GI => gr:GI := r::GI F is GRN => complex(real(gr)::RN,imag(gr)::RN)$GRN F is CF => convert(gr) error "case not handled" -- construct the equation makeEq(nres:L F,lv:L SE) : L EQ P F == [equation(x::(P F),r::(P F)) for x in lv for r in nres] evaluate(pol:P K,xvar:SE,zvar:SE,z:F):F == rpp:=map(numeric,pol)$PolynomialFunctions2(K,F) rpp := eval(rpp,zvar,z) upol:=univariate(rpp,xvar) retract(-coefficient(upol,0))/retract(leadingCoefficient upol) myConvert(eps:Par) : RN == Par is RN => eps Par is NF => retract(eps)$NF innerSolve1(pol:P K,eps:Par) : L F == innerSolve1(univariate pol,eps) innerSolve1(upol:SUP K,eps:Par) : L F == K is GI and (Par is RN or Par is NF) => (complexZeros(upol, eps)$ComplexRootPackage(SUP K,Par)) pretend L(F) K is I => F is Float => z:= realZeros(upol,myConvert eps)$RealZeroPackage(SUP I) [convert((1/2)*(x.left+x.right))@Float for x in z] pretend L(F) F is RN => z:= realZeros(upol,myConvert eps)$RealZeroPackage(SUP I) [(1/2)*(x.left + x.right) for x in z] pretend L(F) error "improper arguments to INFSP" error "improper arguments to INFSP" -- find the zeros of components in "generic" position -- findGenZeros(lp:L P K,rlvar:L SE,eps:Par) : L L F == rlp:=reverse lp f:=rlp.first zvar:= rlvar.first rlp:=rlp.rest lz:=innerSolve1(f,eps) [reverse cons(z,[evaluate(pol,xvar,zvar,z) for pol in rlp for xvar in rlvar.rest]) for z in lz] -- convert to the old coordinates -- oldCoord(numres:L F,lval:L I) : L F == rnumres:=reverse numres rnumres.first:= rnumres.first + (+/[n*nr for n in lval for nr in rnumres.rest]) reverse rnumres -- real zeros of a system of 2 polynomials lp (incomplete) innerSolve2(lp:L P K,lv:L SE,eps: Par):L L F == mainvar := first lv up1:=univariate(lp.1, mainvar) up2:=univariate(lp.2, mainvar) vec := subresultantVector(up1,up2)$SubResultantPackage(P K,SUP P K) p0 := primitivePart multivariate(vec.0, mainvar) p1 := primitivePart(multivariate(vec.1, mainvar),mainvar) zero? p1 or not one? gcd(p0, leadingCoefficient(univariate(p1,mainvar))) => innerSolve(cons(0,lp),empty(),lv,eps) findGenZeros([p1, p0], reverse lv, eps) -- real zeros of the system of polynomial lp -- innerSolve(lp:L P K,ld:L P K,lv:L SE,eps: Par) : L L F == -- empty?(ld) and (#lv = 2) and (# lp = 2) => innerSolve2(lp, lv, eps) lnp:= [pToDmp(p)$PolToPol(lv,K) for p in lp] OV:=OrderedVariableList(lv) lvv:L OV:= [variable(vv)::OV for vv in lv] DP:=DirectProduct(#lv,NonNegativeInteger) dmp:=DistributedMultivariatePolynomial(lv,K) lq:L dmp:=[] if ld~=[] then lq:= [(pToDmp(q1)$PolToPol(lv,K)) pretend dmp for q1 in ld] partRes:=groebSolve(lnp,lvv)$GroebnerSolve(lv,K,K) pretend (L L dmp) partRes=list [] => [] -- remove components where denominators vanish if lq~=[] then gb:=GroebnerInternalPackage(K,DirectProduct(#lv,NNI),OV,dmp) partRes:=[pr for pr in partRes| and/[not zero?(redPol(fq,pr pretend List(dmp))$gb) for fq in lq]] -- select the components in "generic" form rlv:=reverse lv rrlvv:= rest reverse lvv listGen:L L dmp:=[] for res in partRes repeat res1:=rest reverse res "and"/[("max"/degree(f,rrlvv))=1 for f in res1] => listGen:=concat(res pretend (L dmp),listGen) result:L L F := [] if listGen~=[] then listG :L L P K:= [[dmpToP(pf)$PolToPol(lv,K) for pf in pr] for pr in listGen] result:= "append"/[findGenZeros(res,rlv,eps) for res in listG] for gres in listGen repeat partRes:=delete(partRes,position(gres,partRes)) -- adjust the non-generic components for gres in partRes repeat genRecord := genericPosition(gres,lvv)$GroebnerSolve(lv,K,K) lgen := genRecord.dpolys lval := genRecord.coords lgen1:=[dmpToP(pf)$PolToPol(lv,K) for pf in lgen] lris:=findGenZeros(lgen1,rlv,eps) result:= append([oldCoord(r,lval) for r in lris],result) result @ \section{package FLOATRP FloatingRealPackage} <<package FLOATRP FloatingRealPackage>>= )abbrev package FLOATRP FloatingRealPackage ++ Author: P. Gianni ++ Date Created: January 1990 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: SystemSolvePackage, RadicalSolvePackage, ++ FloatingComplexPackage ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is a package for the approximation of real solutions for ++ systems of polynomial equations over the rational numbers. ++ The results are expressed as either rational numbers or floats ++ depending on the type of the precision parameter which can be ++ either a rational number or a floating point number. FloatingRealPackage(Par): Cat == Cap where I ==> Integer NNI ==> NonNegativeInteger P ==> Polynomial EQ ==> Equation L ==> List SUP ==> SparseUnivariatePolynomial RN ==> Fraction Integer NF ==> Float CF ==> Complex Float GI ==> Complex Integer GRN ==> Complex RN SE ==> Symbol RFI ==> Fraction P I INFSP ==> InnerNumericFloatSolvePackage Par : Join(OrderedRing, Field) -- RN or NewFloat Cat == with solve: (L RFI,Par) -> L L EQ P Par ++ solve(lp,eps) finds all of the real solutions of the ++ system lp of rational functions over the rational numbers ++ with respect to all the variables appearing in lp, ++ with precision eps. solve: (L EQ RFI,Par) -> L L EQ P Par ++ solve(leq,eps) finds all of the real solutions of the ++ system leq of equationas of rational functions ++ with respect to all the variables appearing in lp, ++ with precision eps. solve: (RFI,Par) -> L EQ P Par ++ solve(p,eps) finds all of the real solutions of the ++ univariate rational function p with rational coefficients ++ with respect to the unique variable appearing in p, ++ with precision eps. solve: (EQ RFI,Par) -> L EQ P Par ++ solve(eq,eps) finds all of the real solutions of the ++ univariate equation eq of rational functions ++ with respect to the unique variables appearing in eq, ++ with precision eps. realRoots: (L RFI,L SE,Par) -> L L Par ++ realRoots(lp,lv,eps) computes the list of the real ++ solutions of the list lp of rational functions with rational ++ coefficients with respect to the variables in lv, ++ with precision eps. Each solution is expressed as a list ++ of numbers in order corresponding to the variables in lv. realRoots : (RFI,Par) -> L Par ++ realRoots(rf, eps) finds the real zeros of a univariate ++ rational function with precision given by eps. Cap == add makeEq(nres:L Par,lv:L SE) : L EQ P Par == [equation(x::(P Par),r::(P Par)) for x in lv for r in nres] -- find the real zeros of an univariate rational polynomial -- realRoots(p:RFI,eps:Par) : L Par == innerSolve1(numer p,eps)$INFSP(I,Par,Par) -- real zeros of the system of polynomial lp -- realRoots(lp:L RFI,lv:L SE,eps: Par) : L L Par == lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par) solve(lp:L RFI,eps : Par) : L L EQ P Par == lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] lv:="setUnion"/[variables np for np in lnum] if lden~=[] then lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden]) [makeEq(numres,lv) for numres in innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par)] solve(le:L EQ RFI,eps : Par) : L L EQ P Par == lp:=[lhs ep - rhs ep for ep in le] lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] lv:="setUnion"/[variables np for np in lnum] if lden~=[] then lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden]) [makeEq(numres,lv) for numres in innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par)] solve(p : RFI,eps : Par) : L EQ P Par == (mvar := mainVariable numer p ) case "failed" => error "no variable found" x:P Par:=mvar::SE::(P Par) [equation(x,val::(P Par)) for val in realRoots(p,eps)] solve(eq : EQ RFI,eps : Par) : L EQ P Par == solve(lhs eq - rhs eq,eps) @ \section{package FLOATCP FloatingComplexPackage} <<package FLOATCP FloatingComplexPackage>>= )abbrev package FLOATCP FloatingComplexPackage ++ Author: P. Gianni ++ Date Created: January 1990 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: SystemSolvePackage, RadicalSolvePackage, ++ FloatingRealPackage ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is a package for the approximation of complex solutions for ++ systems of equations of rational functions with complex rational ++ coefficients. The results are expressed as either complex rational ++ numbers or complex floats depending on the type of the precision ++ parameter which can be either a rational number or a floating point number. FloatingComplexPackage(Par): Cat == Cap where Par : Join(Field, OrderedRing) K ==> GI FPK ==> Fraction P K C ==> Complex I ==> Integer NNI ==> NonNegativeInteger P ==> Polynomial EQ ==> Equation L ==> List SUP ==> SparseUnivariatePolynomial RN ==> Fraction Integer NF ==> Float CF ==> Complex Float GI ==> Complex Integer GRN ==> Complex RN SE ==> Symbol RFI ==> Fraction P I INFSP ==> InnerNumericFloatSolvePackage Cat == with complexSolve: (L FPK,Par) -> L L EQ P C Par ++ complexSolve(lp,eps) finds all the complex solutions to ++ precision eps of the system lp of rational functions ++ over the complex rationals with respect to all the ++ variables appearing in lp. complexSolve: (L EQ FPK,Par) -> L L EQ P C Par ++ complexSolve(leq,eps) finds all the complex solutions ++ to precision eps of the system leq of equations ++ of rational functions over complex rationals ++ with respect to all the variables appearing in lp. complexSolve: (FPK,Par) -> L EQ P C Par ++ complexSolve(p,eps) find all the complex solutions of the ++ rational function p with complex rational coefficients ++ with respect to all the variables appearing in p, ++ with precision eps. complexSolve: (EQ FPK,Par) -> L EQ P C Par ++ complexSolve(eq,eps) finds all the complex solutions of the ++ equation eq of rational functions with rational rational coefficients ++ with respect to all the variables appearing in eq, ++ with precision eps. complexRoots : (FPK,Par) -> L C Par ++ complexRoots(rf, eps) finds all the complex solutions of a ++ univariate rational function with rational number coefficients. ++ The solutions are computed to precision eps. complexRoots : (L FPK,L SE,Par) -> L L C Par ++ complexRoots(lrf, lv, eps) finds all the complex solutions of a ++ list of rational functions with rational number coefficients ++ with respect the the variables appearing in lv. ++ Each solution is computed to precision eps and returned as ++ list corresponding to the order of variables in lv. Cap == add -- find the complex zeros of an univariate polynomial -- complexRoots(q:FPK,eps:Par) : L C Par == p:=numer q complexZeros(univariate p,eps)$ComplexRootPackage(SUP GI, Par) -- find the complex zeros of an univariate polynomial -- complexRoots(lp:L FPK,lv:L SE,eps:Par) : L L C Par == lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par) complexSolve(lp:L FPK,eps : Par) : L L EQ P C Par == lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] lv:="setUnion"/[variables np for np in lnum] if lden~=[] then lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden]) [[equation(x::(P C Par),r::(P C Par)) for x in lv for r in nres] for nres in innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par)] complexSolve(le:L EQ FPK,eps : Par) : L L EQ P C Par == lp:=[lhs ep - rhs ep for ep in le] lnum:=[numer p for p in lp] lden:=[dp for p in lp |not one?(dp:=denom p)] lv:="setUnion"/[variables np for np in lnum] if lden~=[] then lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden]) [[equation(x::(P C Par),r::(P C Par)) for x in lv for r in nres] for nres in innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par)] complexSolve(p : FPK,eps : Par) : L EQ P C Par == (mvar := mainVariable numer p ) case "failed" => error "no variable found" x:P C Par:=mvar::SE::(P C Par) [equation(x,val::(P C Par)) for val in complexRoots(p,eps)] complexSolve(eq : EQ FPK,eps : Par) : L EQ P C Par == complexSolve(lhs eq - rhs eq,eps) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package INFSP InnerNumericFloatSolvePackage>> <<package FLOATRP FloatingRealPackage>> <<package FLOATCP FloatingComplexPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}