\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra numquad.spad} \author{Yurij Baransky} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package NUMQUAD NumericalQuadrature} <<package NUMQUAD NumericalQuadrature>>= )abbrev package NUMQUAD NumericalQuadrature ++ Author: Yurij A. Baransky ++ Date Created: October 90 ++ Date Last Updated: October 90 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This suite of routines performs numerical quadrature using ++ algorithms derived from the basic trapezoidal rule. Because ++ the error term of this rule contains only even powers of the ++ step size (for open and closed versions), fast convergence ++ can be obtained if the integrand is sufficiently smooth. ++ ++ Each routine returns a Record of type TrapAns, which contains\indent{3} ++ \newline value (\spadtype{Float}):\tab{20} estimate of the integral ++ \newline error (\spadtype{Float}):\tab{20} estimate of the error in the computation ++ \newline totalpts (\spadtype{Integer}):\tab{20} total number of function evaluations ++ \newline success (\spadtype{Boolean}):\tab{20} if the integral was computed within the user specified error criterion ++ \indent{0}\indent{0} ++ To produce this estimate, each routine generates an internal ++ sequence of sub-estimates, denoted by {\em S(i)}, depending on the ++ routine, to which the various convergence criteria are applied. ++ The user must supply a relative accuracy, \spad{eps_r}, and an absolute ++ accuracy, \spad{eps_a}. Convergence is obtained when either ++ \center{\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} ++ \center{or \spad{ABS(S(i) - S(i-1)) < eps_a}} ++ are true statements. ++ ++ The routines come in three families and three flavors: ++ \newline\tab{3} closed:\tab{20}romberg,\tab{30}simpson,\tab{42}trapezoidal ++ \newline\tab{3} open: \tab{20}rombergo,\tab{30}simpsono,\tab{42}trapezoidalo ++ \newline\tab{3} adaptive closed:\tab{20}aromberg,\tab{30}asimpson,\tab{42}atrapezoidal ++ \par ++ The {\em S(i)} for the trapezoidal family is the value of the ++ integral using an equally spaced absicca trapezoidal rule for ++ that level of refinement. ++ \par ++ The {\em S(i)} for the simpson family is the value of the integral ++ using an equally spaced absicca simpson rule for that level of ++ refinement. ++ \par ++ The {\em S(i)} for the romberg family is the estimate of the integral ++ using an equally spaced absicca romberg method. For ++ the \spad{i}-th level, this is an appropriate combination of all the ++ previous trapezodial estimates so that the error term starts ++ with the \spad{2*(i+1)} power only. ++ \par ++ The three families come in a closed version, where the formulas ++ include the endpoints, an open version where the formulas do not ++ include the endpoints and an adaptive version, where the user ++ is required to input the number of subintervals over which the ++ appropriate closed family integrator will apply with the usual ++ convergence parmeters for each subinterval. This is useful ++ where a large number of points are needed only in a small fraction ++ of the entire domain. ++ \par ++ Each routine takes as arguments: ++ \newline f\tab{10} integrand ++ \newline a\tab{10} starting point ++ \newline b\tab{10} ending point ++ \newline \spad{eps_r}\tab{10} relative error ++ \newline \spad{eps_a}\tab{10} absolute error ++ \newline \spad{nmin} \tab{10} refinement level when to start checking for convergence (> 1) ++ \newline \spad{nmax} \tab{10} maximum level of refinement ++ \par ++ The adaptive routines take as an additional parameter ++ \newline \spad{nint}\tab{10} the number of independent intervals to apply a closed ++ family integrator of the same name. ++ \par Notes: ++ \newline Closed family level i uses \spad{1 + 2**i} points. ++ \newline Open family level i uses \spad{1 + 3**i} points. NumericalQuadrature(): Exports == Implementation where L ==> List V ==> Vector I ==> Integer B ==> Boolean E ==> OutputForm F ==> Float PI ==> PositiveInteger OFORM ==> OutputForm TrapAns ==> Record(value:F, error:F, totalpts:I, success:B ) Exports ==> with aromberg : (F -> F,F,F,F,F,I,I,I) -> TrapAns ++ aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint) ++ uses the adaptive romberg method to numerically integrate function ++ \spad{fn} over the closed interval from \spad{a} to \spad{b}, ++ with relative accuracy \spad{epsrel} and absolute accuracy ++ \spad{epsabs}, with the refinement levels for convergence checking ++ vary from \spad{nmin} to \spad{nmax}, and where \spad{nint} ++ is the number of independent intervals to apply the integrator. ++ The value returned is a record containing the value of the integral, ++ the estimate of the error in the computation, the total number of ++ function evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. asimpson : (F -> F,F,F,F,F,I,I,I) -> TrapAns ++ asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint) uses the ++ adaptive simpson method to numerically integrate function \spad{fn} ++ over the closed interval from \spad{a} to \spad{b}, with relative ++ accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, with the ++ refinement levels for convergence checking vary from \spad{nmin} ++ to \spad{nmax}, and where \spad{nint} is the number of independent ++ intervals to apply the integrator. The value returned is a record ++ containing the value of the integral, the estimate of the error in ++ the computation, the total number of function evaluations, and ++ either a boolean value which is true if the integral was computed ++ within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. atrapezoidal : (F -> F,F,F,F,F,I,I,I) -> TrapAns ++ atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint) uses the ++ adaptive trapezoidal method to numerically integrate function ++ \spad{fn} over the closed interval from \spad{a} to \spad{b}, with ++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, ++ with the refinement levels for convergence checking vary from ++ \spad{nmin} to \spad{nmax}, and where \spad{nint} is the number ++ of independent intervals to apply the integrator. The value returned ++ is a record containing the value of the integral, the estimate of ++ the error in the computation, the total number of function ++ evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. romberg : (F -> F,F,F,F,F,I,I) -> TrapAns ++ romberg(fn,a,b,epsrel,epsabs,nmin,nmax) uses the romberg ++ method to numerically integrate function \spadvar{fn} over the closed ++ interval \spad{a} to \spad{b}, with relative accuracy \spad{epsrel} ++ and absolute accuracy \spad{epsabs}, with the refinement levels ++ for convergence checking vary from \spad{nmin} to \spad{nmax}. ++ The value returned is a record containing the value ++ of the integral, the estimate of the error in the computation, the ++ total number of function evaluations, and either a boolean value ++ which is true if the integral was computed within the user specified ++ error criterion. See \spadtype{NumericalQuadrature} for details. simpson : (F -> F,F,F,F,F,I,I) -> TrapAns ++ simpson(fn,a,b,epsrel,epsabs,nmin,nmax) uses the simpson ++ method to numerically integrate function \spad{fn} over the closed ++ interval \spad{a} to \spad{b}, with ++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, ++ with the refinement levels for convergence checking vary from ++ \spad{nmin} to \spad{nmax}. The value returned ++ is a record containing the value of the integral, the estimate of ++ the error in the computation, the total number of function ++ evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. trapezoidal : (F -> F,F,F,F,F,I,I) -> TrapAns ++ trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax) uses the ++ trapezoidal method to numerically integrate function \spadvar{fn} over ++ the closed interval \spad{a} to \spad{b}, with relative accuracy ++ \spad{epsrel} and absolute accuracy \spad{epsabs}, with the ++ refinement levels for convergence checking vary ++ from \spad{nmin} to \spad{nmax}. The value ++ returned is a record containing the value of the integral, the ++ estimate of the error in the computation, the total number of ++ function evaluations, and either a boolean value which is true ++ if the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. rombergo : (F -> F,F,F,F,F,I,I) -> TrapAns ++ rombergo(fn,a,b,epsrel,epsabs,nmin,nmax) uses the romberg ++ method to numerically integrate function \spad{fn} over ++ the open interval from \spad{a} to \spad{b}, with ++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, ++ with the refinement levels for convergence checking vary from ++ \spad{nmin} to \spad{nmax}. The value returned ++ is a record containing the value of the integral, the estimate of ++ the error in the computation, the total number of function ++ evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. simpsono : (F -> F,F,F,F,F,I,I) -> TrapAns ++ simpsono(fn,a,b,epsrel,epsabs,nmin,nmax) uses the ++ simpson method to numerically integrate function \spad{fn} over ++ the open interval from \spad{a} to \spad{b}, with ++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, ++ with the refinement levels for convergence checking vary from ++ \spad{nmin} to \spad{nmax}. The value returned ++ is a record containing the value of the integral, the estimate of ++ the error in the computation, the total number of function ++ evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. trapezoidalo : (F -> F,F,F,F,F,I,I) -> TrapAns ++ trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax) uses the ++ trapezoidal method to numerically integrate function \spad{fn} ++ over the open interval from \spad{a} to \spad{b}, with ++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, ++ with the refinement levels for convergence checking vary from ++ \spad{nmin} to \spad{nmax}. The value returned ++ is a record containing the value of the integral, the estimate of ++ the error in the computation, the total number of function ++ evaluations, and either a boolean value which is true if ++ the integral was computed within the user specified error criterion. ++ See \spadtype{NumericalQuadrature} for details. Implementation ==> add trapclosed : (F -> F,F,F,F,I) -> F trapopen : (F -> F,F,F,F,I) -> F import OutputPackage --------------------------------------------------- aromberg(func,a,b,epsrel,epsabs,nmin,nmax,nint) == ans : TrapAns sum : F := 0.0 err : F := 0.0 pts : I := 1 done : B := true hh : F := (b-a) / nint x1 : F := a x2 : F := a + hh io : L OFORM := [x1::E,x2::E] i : I for i in 1..nint repeat ans := romberg(func,x1,x2,epsrel,epsabs,nmin,nmax) if (not ans.success) then io.1 := x1::E io.2 := x2::E print blankSeparate cons("accuracy not reached in interval"::E,io) sum := sum + ans.value err := err + abs(ans.error) pts := pts + ans.totalpts-1 done := (done and ans.success) x1 := x2 x2 := x2 + hh return( [sum , err , pts , done] ) --------------------------------------------------- asimpson(func,a,b,epsrel,epsabs,nmin,nmax,nint) == ans : TrapAns sum : F := 0.0 err : F := 0.0 pts : I := 1 done : B := true hh : F := (b-a) / nint x1 : F := a x2 : F := a + hh io : L OFORM := [x1::E,x2::E] i : I for i in 1..nint repeat ans := simpson(func,x1,x2,epsrel,epsabs,nmin,nmax) if (not ans.success) then io.1 := x1::E io.2 := x2::E print blankSeparate cons("accuracy not reached in interval"::E,io) sum := sum + ans.value err := err + abs(ans.error) pts := pts + ans.totalpts-1 done := (done and ans.success) x1 := x2 x2 := x2 + hh return( [sum , err , pts , done] ) --------------------------------------------------- atrapezoidal(func,a,b,epsrel,epsabs,nmin,nmax,nint) == ans : TrapAns sum : F := 0.0 err : F := 0.0 pts : I := 1 i : I done : B := true hh : F := (b-a) / nint x1 : F := a x2 : F := a + hh io : L OFORM := [x1::E,x2::E] for i in 1..nint repeat ans := trapezoidal(func,x1,x2,epsrel,epsabs,nmin,nmax) if (not ans.success) then io.1 := x1::E io.2 := x2::E print blankSeparate cons("accuracy not reached in interval"::E,io) sum := sum + ans.value err := err + abs(ans.error) pts := pts + ans.totalpts-1 done := (done and ans.success) x1 := x2 x2 := x2 + hh return( [sum , err , pts , done] ) --------------------------------------------------- romberg(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length newsum : F := 0.5 * length * (func(a)+func(b)) newest : F := 0.0 oldsum : F := 0.0 oldest : F := 0.0 change : F := 0.0 qx1 : F := newsum table : V F := new((nmax+1)::PI,0.0) n : I := 1 pts : I := 1 four : I j : I i : I if (nmin < 2) then output("romberg: nmin to small (nmin > 1) nmin = ",nmin::E) return([0.0,0.0,0,false]) if (nmax < nmin) then output("romberg: nmax < nmin : nmax = ",nmax::E) output(" nmin = ",nmin::E) return([0.0,0.0,0,false]) if (a = b) then output("romberg: integration limits are equal = ",a::E) return([0.0,0.0,1,true]) if (epsrel < 0.0) then output("romberg: eps_r < 0.0 eps_r = ",epsrel::E) return([0.0,0.0,0,false]) if (epsabs < 0.0) then output("romberg: eps_a < 0.0 eps_a = ",epsabs::E) return([0.0,0.0,0,false]) for n in 1..nmax repeat oldsum := newsum newsum := trapclosed(func,a,delta,oldsum,pts) newest := (4.0 * newsum - oldsum) / 3.0 four := 4 table(n) := newest for j in 2..n repeat i := n+1-j four := four * 4 table(i) := table(i+1) + (table(i+1)-table(i)) / (four-1) if n > nmin then change := abs(table(1) - qx1) if change < abs(epsrel*qx1) then return( [table(1) , change , 2*pts+1 , true] ) if change < epsabs then return( [table(1) , change , 2*pts+1 , true] ) oldsum := newsum oldest := newest delta := 0.5*delta pts := 2*pts qx1 := table(1) return( [table(1) , 1.25*change , pts+1 ,false] ) --------------------------------------------------- simpson(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length newsum : F := 0.5*(b-a)*(func(a)+func(b)) newest : F := 0.0 oldsum : F := 0.0 oldest : F := 0.0 change : F := 0.0 n : I := 1 pts : I := 1 if (nmin < 2) then output("simpson: nmin to small (nmin > 1) nmin = ",nmin::E) return([0.0,0.0,0,false]) if (nmax < nmin) then output("simpson: nmax < nmin : nmax = ",nmax::E) output(" nmin = ",nmin::E) return([0.0,0.0,0,false]) if (a = b) then output("simpson: integration limits are equal = ",a::E) return([0.0,0.0,1,true]) if (epsrel < 0.0) then output("simpson: eps_r < 0.0 : eps_r = ",epsrel::E) return([0.0,0.0,0,false]) if (epsabs < 0.0) then output("simpson: eps_a < 0.0 : eps_a = ",epsabs::E) return([0.0,0.0,0,false]) for n in 1..nmax repeat oldsum := newsum newsum := trapclosed(func,a,delta,oldsum,pts) newest := (4.0 * newsum - oldsum) / 3.0 if n > nmin then change := abs(newest-oldest) if change < abs(epsrel*oldest) then return( [newest , 1.25*change , 2*pts+1 , true] ) if change < epsabs then return( [newest , 1.25*change , 2*pts+1 , true] ) oldsum := newsum oldest := newest delta := 0.5*delta pts := 2*pts return( [newest , 1.25*change , pts+1 ,false] ) --------------------------------------------------- trapezoidal(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length newsum : F := 0.5*(b-a)*(func(a)+func(b)) change : F := 0.0 oldsum : F n : I := 1 pts : I := 1 if (nmin < 2) then output("trapezoidal: nmin to small (nmin > 1) nmin = ",nmin::E) return([0.0,0.0,0,false]) if (nmax < nmin) then output("trapezoidal: nmax < nmin : nmax = ",nmax::E) output(" nmin = ",nmin::E) return([0.0,0.0,0,false]) if (a = b) then output("trapezoidal: integration limits are equal = ",a::E) return([0.0,0.0,1,true]) if (epsrel < 0.0) then output("trapezoidal: eps_r < 0.0 : eps_r = ",epsrel::E) return([0.0,0.0,0,false]) if (epsabs < 0.0) then output("trapezoidal: eps_a < 0.0 : eps_a = ",epsabs::E) return([0.0,0.0,0,false]) for n in 1..nmax repeat oldsum := newsum newsum := trapclosed(func,a,delta,oldsum,pts) if n > nmin then change := abs(newsum-oldsum) if change < abs(epsrel*oldsum) then return( [newsum , 1.25*change , 2*pts+1 , true] ) if change < epsabs then return( [newsum , 1.25*change , 2*pts+1 , true] ) delta := 0.5*delta pts := 2*pts return( [newsum , 1.25*change , pts+1 ,false] ) --------------------------------------------------- rombergo(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length / 3.0 newsum : F := length * func( 0.5*(a+b) ) newest : F := 0.0 oldsum : F := 0.0 oldest : F := 0.0 change : F := 0.0 qx1 : F := newsum table : V F := new((nmax+1)::PI,0.0) four : I j : I i : I n : I := 1 pts : I := 1 for n in 1..nmax repeat oldsum := newsum newsum := trapopen(func,a,delta,oldsum,pts) newest := (9.0 * newsum - oldsum) / 8.0 table(n) := newest nine := 9 output(newest::E) for j in 2..n repeat i := n+1-j nine := nine * 9 table(i) := table(i+1) + (table(i+1)-table(i)) / (nine-1) if n > nmin then change := abs(table(1) - qx1) if change < abs(epsrel*qx1) then return( [table(1) , 1.5*change , 3*pts , true] ) if change < epsabs then return( [table(1) , 1.5*change , 3*pts , true] ) output(table::E) oldsum := newsum oldest := newest delta := delta / 3.0 pts := 3*pts qx1 := table(1) return( [table(1) , 1.5*change , pts ,false] ) --------------------------------------------------- simpsono(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length / 3.0 newsum : F := length * func( 0.5*(a+b) ) newest : F := 0.0 oldsum : F := 0.0 oldest : F := 0.0 change : F := 0.0 n : I := 1 pts : I := 1 for n in 1..nmax repeat oldsum := newsum newsum := trapopen(func,a,delta,oldsum,pts) newest := (9.0 * newsum - oldsum) / 8.0 output(newest::E) if n > nmin then change := abs(newest - oldest) if change < abs(epsrel*oldest) then return( [newest , 1.5*change , 3*pts , true] ) if change < epsabs then return( [newest , 1.5*change , 3*pts , true] ) oldsum := newsum oldest := newest delta := delta / 3.0 pts := 3*pts return( [newest , 1.5*change , pts ,false] ) --------------------------------------------------- trapezoidalo(func,a,b,epsrel,epsabs,nmin,nmax) == length : F := (b-a) delta : F := length/3.0 newsum : F := length*func( 0.5*(a+b) ) change : F := 0.0 pts : I := 1 oldsum : F n : I for n in 1..nmax repeat oldsum := newsum newsum := trapopen(func,a,delta,oldsum,pts) output(newsum::E) if n > nmin then change := abs(newsum-oldsum) if change < abs(epsrel*oldsum) then return([newsum , 1.5*change , 3*pts , true] ) if change < epsabs then return([newsum , 1.5*change , 3*pts , true] ) delta := delta / 3.0 pts := 3*pts return([newsum , 1.5*change , pts ,false] ) --------------------------------------------------- trapclosed(func,start,h,oldsum,numpoints) == x : F := start + 0.5*h sum : F := 0.0 i : I for i in 1..numpoints repeat sum := sum + func(x) x := x + h return( 0.5*(oldsum + sum*h) ) --------------------------------------------------- trapopen(func,start,del,oldsum,numpoints) == ddel : F := 2.0*del x : F := start + 0.5*del sum : F := 0.0 i : I for i in 1..numpoints repeat sum := sum + func(x) x := x + ddel sum := sum + func(x) x := x + del return( (oldsum/3.0 + sum*del) ) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package NUMQUAD NumericalQuadrature>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}