\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra numeric.spad} \author{Manuel Bronstein, Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package NUMERIC Numeric} <<package NUMERIC Numeric>>= )abbrev package NUMERIC Numeric ++ Author: Manuel Bronstein ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 17 August 1995, Mike Dewar ++ 24 January 1997, Miked Dewar (added partial operators) ++ Basic Operations: numeric, complexNumeric, numericIfCan, complexNumericIfCan ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: Numeric provides real and complex numerical evaluation ++ functions for various symbolic types. Numeric(S:ConvertibleTo Float): with numeric: S -> Float ++ numeric(x) returns a real approximation of x. numeric: (S, PositiveInteger) -> Float ++ numeric(x, n) returns a real approximation of x up to n decimal ++ places. complexNumeric: S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x up ++ to n decimal places. if S has CommutativeRing then complexNumeric: Complex S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Complex S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x up ++ to n decimal places. complexNumeric: Polynomial Complex S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Polynomial Complex S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x up ++ to n decimal places. if S has Ring then numeric: Polynomial S -> Float ++ numeric(x) returns a real approximation of x. numeric: (Polynomial S, PositiveInteger) -> Float ++ numeric(x,n) returns a real approximation of x up to n decimal ++ places. complexNumeric: Polynomial S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Polynomial S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x ++ up to n decimal places. if S has IntegralDomain then numeric: Fraction Polynomial S -> Float ++ numeric(x) returns a real approximation of x. numeric: (Fraction Polynomial S, PositiveInteger) -> Float ++ numeric(x,n) returns a real approximation of x up to n decimal ++ places. complexNumeric: Fraction Polynomial S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Fraction Polynomial S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x complexNumeric: Fraction Polynomial Complex S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Fraction Polynomial Complex S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x ++ up to n decimal places. if S has OrderedSet then numeric: Expression S -> Float ++ numeric(x) returns a real approximation of x. numeric: (Expression S, PositiveInteger) -> Float ++ numeric(x, n) returns a real approximation of x up to n ++ decimal places. complexNumeric: Expression S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Expression S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x ++ up to n decimal places. complexNumeric: Expression Complex S -> Complex Float ++ complexNumeric(x) returns a complex approximation of x. complexNumeric: (Expression Complex S, PositiveInteger) -> Complex Float ++ complexNumeric(x, n) returns a complex approximation of x ++ up to n decimal places. if S has CommutativeRing then complexNumericIfCan: Polynomial Complex S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not constant. complexNumericIfCan: (Polynomial Complex S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x up ++ to n decimal places, or "failed" if \axiom{x} is not a constant. if S has Ring then numericIfCan: Polynomial S -> Union(Float,"failed") ++ numericIfCan(x) returns a real approximation of x, ++ or "failed" if \axiom{x} is not a constant. numericIfCan: (Polynomial S, PositiveInteger) -> Union(Float,"failed") ++ numericIfCan(x,n) returns a real approximation of x up to n decimal ++ places, or "failed" if \axiom{x} is not a constant. complexNumericIfCan: Polynomial S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: (Polynomial S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x ++ up to n decimal places, or "failed" if \axiom{x} is not a constant. if S has IntegralDomain then numericIfCan: Fraction Polynomial S -> Union(Float,"failed") ++ numericIfCan(x) returns a real approximation of x, ++ or "failed" if \axiom{x} is not a constant. numericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Float,"failed") ++ numericIfCan(x,n) returns a real approximation of x up to n decimal ++ places, or "failed" if \axiom{x} is not a constant. complexNumericIfCan: Fraction Polynomial S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: Fraction Polynomial Complex S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: (Fraction Polynomial Complex S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x ++ up to n decimal places, or "failed" if \axiom{x} is not a constant. if S has OrderedSet then numericIfCan: Expression S -> Union(Float,"failed") ++ numericIfCan(x) returns a real approximation of x, ++ or "failed" if \axiom{x} is not a constant. numericIfCan: (Expression S, PositiveInteger) -> Union(Float,"failed") ++ numericIfCan(x, n) returns a real approximation of x up to n ++ decimal places, or "failed" if \axiom{x} is not a constant. complexNumericIfCan: Expression S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: (Expression S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x ++ up to n decimal places, or "failed" if \axiom{x} is not a constant. complexNumericIfCan: Expression Complex S -> Union(Complex Float,"failed") ++ complexNumericIfCan(x) returns a complex approximation of x, ++ or "failed" if \axiom{x} is not a constant. complexNumericIfCan: (Expression Complex S, PositiveInteger) -> Union(Complex Float,"failed") ++ complexNumericIfCan(x, n) returns a complex approximation of x ++ up to n decimal places, or "failed" if \axiom{x} is not a constant. == add if S has CommutativeRing then complexNumericIfCan(p:Polynomial Complex S) == p' : Union(Complex(S),"failed") := retractIfCan p p' case "failed" => "failed" complexNumeric(p') complexNumericIfCan(p:Polynomial Complex S,n:PositiveInteger) == p' : Union(Complex(S),"failed") := retractIfCan p p' case "failed" => "failed" complexNumeric(p',n) if S has Ring then numericIfCan(p:Polynomial S) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => "failed" numeric(p') complexNumericIfCan(p:Polynomial S) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => "failed" complexNumeric(p') complexNumericIfCan(p:Polynomial S, n:PositiveInteger) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => "failed" complexNumeric(p', n) numericIfCan(p:Polynomial S, n:PositiveInteger) == old := digits(n)$Float ans := numericIfCan p digits(old)$Float ans if S has IntegralDomain then numericIfCan(f:Fraction Polynomial S)== num := numericIfCan(numer(f)) num case "failed" => "failed" den := numericIfCan(denom f) den case "failed" => "failed" num/den complexNumericIfCan(f:Fraction Polynomial S) == num := complexNumericIfCan(numer f) num case "failed" => "failed" den := complexNumericIfCan(denom f) den case "failed" => "failed" num/den complexNumericIfCan(f:Fraction Polynomial S, n:PositiveInteger) == num := complexNumericIfCan(numer f, n) num case "failed" => "failed" den := complexNumericIfCan(denom f, n) den case "failed" => "failed" num/den numericIfCan(f:Fraction Polynomial S, n:PositiveInteger) == old := digits(n)$Float ans := numericIfCan f digits(old)$Float ans complexNumericIfCan(f:Fraction Polynomial Complex S) == num := complexNumericIfCan(numer f) num case "failed" => "failed" den := complexNumericIfCan(denom f) den case "failed" => "failed" num/den complexNumericIfCan(f:Fraction Polynomial Complex S, n:PositiveInteger) == num := complexNumericIfCan(numer f, n) num case "failed" => "failed" den := complexNumericIfCan(denom f, n) den case "failed" => "failed" num/den if S has OrderedSet then numericIfCan(x:Expression S) == retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float)) --s2cs(u:S):Complex(S) == complex(u,0) complexNumericIfCan(x:Expression S) == complexNumericIfCan map(coerce, x)$ExpressionFunctions2(S,Complex S) numericIfCan(x:Expression S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float) ans : Union(Float,"failed") := retractIfCan x' digits(old)$Float ans complexNumericIfCan(x:Expression S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Complex S := map(coerce, x)$ExpressionFunctions2(S, Complex S) ans : Union(Complex Float,"failed") := complexNumericIfCan(x') digits(old)$Float ans if S has RealConstant then complexNumericIfCan(x:Expression Complex S) == retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)) complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Complex Float := map(convert, x)$ExpressionFunctions2(Complex S,Complex Float) ans : Union(Complex Float,"failed") := retractIfCan x' digits(old)$Float ans else convert(x:Complex S):Complex(Float)==map(convert,x)$ComplexFunctions2(S,Float) complexNumericIfCan(x:Expression Complex S) == retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)) complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Complex Float := map(convert, x)$ExpressionFunctions2(Complex S,Complex Float) ans : Union(Complex Float,"failed") := retractIfCan x' digits(old)$Float ans numeric(s:S) == convert(s)@Float if S has ConvertibleTo Complex Float then complexNumeric(s:S) == convert(s)@Complex(Float) complexNumeric(s:S, n:PositiveInteger) == old := digits(n)$Float ans := complexNumeric s digits(old)$Float ans else complexNumeric(s:S) == convert(s)@Float :: Complex(Float) complexNumeric(s:S,n:PositiveInteger) == numeric(s, n)::Complex(Float) if S has CommutativeRing then complexNumeric(p:Polynomial Complex S) == p' : Union(Complex(S),"failed") := retractIfCan p p' case "failed" => error "Cannot compute the numerical value of a non-constant polynomial" complexNumeric(p') complexNumeric(p:Polynomial Complex S,n:PositiveInteger) == p' : Union(Complex(S),"failed") := retractIfCan p p' case "failed" => error "Cannot compute the numerical value of a non-constant polynomial" complexNumeric(p',n) if S has RealConstant then complexNumeric(s:Complex S) == convert(s)$Complex(S) complexNumeric(s:Complex S, n:PositiveInteger) == old := digits(n)$Float ans := complexNumeric s digits(old)$Float ans else if Complex(S) has ConvertibleTo(Complex Float) then complexNumeric(s:Complex S) == convert(s)@Complex(Float) complexNumeric(s:Complex S, n:PositiveInteger) == old := digits(n)$Float ans := complexNumeric s digits(old)$Float ans else complexNumeric(s:Complex S) == s' : Union(S,"failed") := retractIfCan s s' case "failed" => error "Cannot compute the numerical value of a non-constant object" complexNumeric(s') complexNumeric(s:Complex S, n:PositiveInteger) == s' : Union(S,"failed") := retractIfCan s s' case "failed" => error "Cannot compute the numerical value of a non-constant object" old := digits(n)$Float ans := complexNumeric s' digits(old)$Float ans numeric(s:S, n:PositiveInteger) == old := digits(n)$Float ans := numeric s digits(old)$Float ans if S has Ring then numeric(p:Polynomial S) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => error "Can only compute the numerical value of a constant, real-valued polynomial" numeric(p') complexNumeric(p:Polynomial S) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => error "Cannot compute the numerical value of a non-constant polynomial" complexNumeric(p') complexNumeric(p:Polynomial S, n:PositiveInteger) == p' : Union(S,"failed") := retractIfCan p p' case "failed" => error "Cannot compute the numerical value of a non-constant polynomial" complexNumeric(p', n) numeric(p:Polynomial S, n:PositiveInteger) == old := digits(n)$Float ans := numeric p digits(old)$Float ans if S has IntegralDomain then numeric(f:Fraction Polynomial S)== numeric(numer(f)) / numeric(denom f) complexNumeric(f:Fraction Polynomial S) == complexNumeric(numer f)/complexNumeric(denom f) complexNumeric(f:Fraction Polynomial S, n:PositiveInteger) == complexNumeric(numer f, n)/complexNumeric(denom f, n) numeric(f:Fraction Polynomial S, n:PositiveInteger) == old := digits(n)$Float ans := numeric f digits(old)$Float ans complexNumeric(f:Fraction Polynomial Complex S) == complexNumeric(numer f)/complexNumeric(denom f) complexNumeric(f:Fraction Polynomial Complex S, n:PositiveInteger) == complexNumeric(numer f, n)/complexNumeric(denom f, n) if S has OrderedSet then numeric(x:Expression S) == x' : Union(Float,"failed") := retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float)) x' case "failed" => error "Can only compute the numerical value of a constant, real-valued Expression" x' complexNumeric(x:Expression S) == x' : Union(Complex Float,"failed") := retractIfCan( map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float)) x' case "failed" => error "Cannot compute the numerical value of a non-constant expression" x' numeric(x:Expression S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float) ans : Union(Float,"failed") := retractIfCan x' digits(old)$Float ans case "failed" => error "Can only compute the numerical value of a constant, real-valued Expression" ans complexNumeric(x:Expression S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Complex Float := map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float) ans : Union(Complex Float,"failed") := retractIfCan x' digits(old)$Float ans case "failed" => error "Cannot compute the numerical value of a non-constant expression" ans complexNumeric(x:Expression Complex S) == x' : Union(Complex Float,"failed") := retractIfCan( map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float)) x' case "failed" => error "Cannot compute the numerical value of a non-constant expression" x' complexNumeric(x:Expression Complex S, n:PositiveInteger) == old := digits(n)$Float x' : Expression Complex Float := map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float) ans : Union(Complex Float,"failed") := retractIfCan x' digits(old)$Float ans case "failed" => error "Cannot compute the numerical value of a non-constant expression" ans @ \section{package DRAWHACK DrawNumericHack} <<package DRAWHACK DrawNumericHack>>= )abbrev package DRAWHACK DrawNumericHack ++ Author: Manuel Bronstein ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 21 Feb 1990 ++ Basic Operations: coerce ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: Hack for the draw interface. DrawNumericHack provides ++ a "coercion" from something of the form \spad{x = a..b} where \spad{a} ++ and b are ++ formal expressions to a binding of the form \spad{x = c..d} where c and d ++ are the numerical values of \spad{a} and b. This "coercion" fails if ++ \spad{a} and b contains symbolic variables, but is meant for expressions ++ involving %pi. ++ NOTE: This is meant for internal use only. DrawNumericHack(R:Join(OrderedSet,IntegralDomain,ConvertibleTo Float)): with coerce: SegmentBinding Expression R -> SegmentBinding Float ++ coerce(x = a..b) returns \spad{x = c..d} where c and d are the ++ numerical values of \spad{a} and b. == add coerce s == map(numeric$Numeric(R),s)$SegmentBindingFunctions2(Expression R, Float) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package NUMERIC Numeric>> <<package DRAWHACK DrawNumericHack>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}