\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra nsfip.as} \author{Michael Richardson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{NagSpecialFunctionsInterfacePackage} <<NagSpecialFunctionsInterfacePackage>>= +++ Author: M.G. Richardson +++ Date Created: 1995 Nov. 27 +++ Date Last Updated: +++ Basic Functions: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This package provides Axiom-like interfaces to those of the NAG +++ special functions in the NAGlink for which no equivalent +++ functionality is transparently present in Axiom. NagSpecialFunctionsInterfacePackage: with { nagExpInt : DF -> DF ; ++ nagExpInt calculates an approximation to the exponential integral, ++ \spad{E1}, defined by #if saturn ++ \[E_{1}(x) = \int_{x}^{\infty }\frac{e^{-u}}{u}\,du\] #else ++ \spad{E1(x) = integrate(1/u*%e^u, u=x..%infinity)} #endif ++ using the NAG routine S13AAF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s13aaf. nagSinInt : DF -> DF ; ++ nagSinInt calculates an approximation to the sine integral, ++ \spad{Si}, defined by #if saturn ++ \[{\rm Si} (x) = \int_{0}^{x}\frac{\sin u}{u}\,du\] #else ++ \spad{Si(x) = integrate(1/u*sin(u), u=0..x)} #endif ++ using the NAG routine S13ADF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s13adf. nagCosInt : DF -> DF ; ++ nagCosInt calculates an approximation to the cosine integral, ++ \spad{Ci}, defined by #if saturn ++ \[{\rm Ci} (x) = ++ \gamma + \ln x+ \int_{0}^{x}\frac{\cos u- 1}{u}\,du\] #else ++ \spad{Ci(x) = gamma + log x + integrate(1/u*cos(u), u=0..x)} ++ where \spad{gamma} is Euler's constant, #endif ++ using the NAG routine S13ACF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s13acf. nagIncompleteGammaP : (DF, DF) -> DF ; -- to machine precision ++ nagIncompleteGammaP evaluates the incomplete gamma function ++ \spad{P}, defined by #if saturn ++ \[P(a,x) & = & \frac{1}{\Gamma(a)}\int_{0}^{x}t^{a-1}e^{-t}\,dt\] #else ++ \spad{P(a,x) = 1/Gamma(a)*integrate(t^(a-1)%e^(-t),t=0..x)} #endif ++ to machine precision, using the NAG routine S14BAF. nagIncompleteGammaP : (DF, DF, DF) -> DF ; ++ nagIncompleteGammaP(a,x,tol) evaluates the incomplete gamma ++ function \spad{P}, defined by #if saturn ++ \[P(a,x) & = & \frac{1}{\Gamma(a)}\int_{0}^{x}t^{a-1}e^{-t}\,dt\] #else ++ \spad{P(a,x) = 1/Gamma(a)*integrate(t^(a-1)%e^(-t),t=0..x)} #endif ++ to a relative accuracy \spad{tol}, using the NAG routine S14BAF. nagIncompleteGammaQ : (DF, DF) -> DF ; ++ nagIncompleteGammaQ evaluates the incomplete gamma function ++ \spad{Q}, defined by #if saturn ++ \[Q(a,x)&=&\frac{1}{\Gamma(a)}\int_{x}^{\infty}t^{a-1}e^{-t}\,dt\] #else ++ \spad{Q(a,x) = 1/Gamma(a)*integrate(t^(a-1)%e^(-t),t=x..%infinity)} #endif ++ to machine precision, using the NAG routine S14BAF. nagIncompleteGammaQ : (DF, DF, DF) -> DF ; ++ nagIncompleteGammaQ(a,x,tol) evaluates the incomplete gamma ++ function \spad{Q}, defined by #if saturn ++ \[Q(a,x)&=&\frac{1}{\Gamma(a)}\int_{x}^{\infty}t^{a-1}e^{-t}\,dt\] #else ++ \spad{Q(a,x) = 1/Gamma(a)*integrate(t^(a-1)%e^(-t),t=x..%infinity)} #endif ++ to a relative accuracy \spad{tol}, using the NAG routine S14BAF. nagErf : DF -> DF ; ++ nagErf calculates an approximation to the error function, ++ \spad{erf}, defined by #if saturn ++ \[{\rm erf}\, x = \frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}\,dt\] #else ++ \spad{erf(x) = 2/sqrt(\%pi)*integrate(\%e^(-t^2),t=0..x)} #endif ++ using the NAG routine S15AEF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s15aef. nagErfC : DF -> DF ; ++ nagErfC calculates an approximation to the complementary error ++ function \spad{erfc}, defined by #if saturn ++ \[{\rm erfc}\,x = ++ \frac{2} {\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}\,dt\] #else ++ \spad{erfc(x) = 2/sqrt(%pi)*integrate(%e^(-t^2),t=x..%infinity)} #endif ++ using the NAG routine S15ADF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s15adf. nagDAiryAi : DF -> DF ; ++ nagDAiryAi calculates an approximation to \spad{Ai'}, the ++ derivative of the Airy function \spad{Ai}, using the NAG routine ++ S17AJF. nagDAiryAi : CDF -> CDF ; ++ nagDAiryAi calculates an approximation to \spad{Ai'}, the ++ derivative of the Airy function \spad{Ai}, using the NAG routine ++ S17DGF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dgf. nagDAiryBi : DF -> DF ; ++ nagDAiryBi calculates an approximation to \spad{Bi'}, the ++ derivative of the Airy function \spad{Bi}, using the NAG routine ++ S17AKF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17akf. nagDAiryBi : CDF -> CDF ; ++ nagDAiryBi calculates an approximation to \spad{Bi'}, the ++ derivative of the Airy function \spad{Bi}, using the NAG routine ++ S17DHF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dhf. nagScaledDAiryAi : CDF -> CDF ; ++ nagDAiryAi(z) calculates an approximation to \spad{Ai'(z)}, the ++ derivative of the Airy function \spad{Ai(z)}, with the result ++ scaled by a factor #if saturn ++ $e^{2z\sqrt{z}/ 3}$ #else ++ \spad{%e^(2*z*sqrt(z)/3)} #endif ++ using the NAG routine S17DGF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dgf. nagScaledDAiryBi : CDF -> CDF ; ++ nagDAiryBi(z) calculates an approximation to \spad{Bi'(z)}, the ++ derivative of the Airy function \spad{Bi(z)}, with the result ++ scaled by a factor #if saturn ++ $e^{2z\sqrt{z}/ 3}$ #else ++ \spad{%e^(2*z*sqrt(z)/3)} #endif ++ using the NAG routine S17DHF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dhf. nagHankelH1 : (DF, CDF, INT) -> MCDF ; ++ nagHankelH1(nu,z,n) calculates an approximation to a sequence of n ++ values of the Hankel function #if saturn ++ $H_{\nu + k}^{(1)}(z)$ #else ++ \spad{H1(nu + k, z)} #endif ++ for non-negative nu and \spad{k = 0,1 ... n-1}, using the NAG ++ routine S17DLF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dlf. nagHankelH2 : (DF, CDF, INT) -> MCDF ; ++ nagHankelH2(nu,z,n) calculates an approximation to a sequence of n ++ values of the Hankel function #if saturn ++ $H_{\nu + k}^{(2)}(z)$ #else ++ \spad{H2(nu + k, z)} #endif ++ for non-negative nu and \spad{k = 0,1 ... n-1}, using the NAG ++ routine S17DLF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dlf. nagScaledHankelH1 : (DF, CDF, INT) -> MCDF ; ++ nagHankelH1(nu,z,n) calculates an approximation to a sequence of n ++ values of the Hankel function #if saturn ++ $H_{\nu + k}^{(1)}(z)$ #else ++ \spad{H1(nu + k, z)} #endif ++ for non-negative nu and \spad{k = 0,1 ... n-1}, with the result ++ scaled by a factor #if saturn ++ $e^{-iz} #else ++ \spad{%e^(-%i*z)} #endif ++ using the NAG routine S17DLF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dlf. nagScaledHankelH2 : (DF, CDF, INT) -> MCDF ; ++ nagHankelH2(nu,z,n) calculates an approximation to a sequence of n ++ values of the Hankel function #if saturn ++ $H_{\nu + k}^{(2)}(z)$ #else ++ \spad{H2(nu + k, z)} #endif ++ for non-negative nu and \spad{k = 0,1 ... n-1}, with the result ++ scaled by a factor #if saturn ++ $e^{iz} #else ++ \spad{%e^(%i*z)} #endif ++ using the NAG routine S17DLF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s17dlf. nagKelvinBer : DF -> DF ; ++ nagKelvinBer calculates an approximation to the Kelvin function ++ \spad{ber}, using the NAG routine S19AAF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s19aaf. nagKelvinBei : DF -> DF ; ++ nagKelvinBei calculates an approximation to the Kelvin function ++ \spad{bei}, using the NAG routine S19ABF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s19abf. nagKelvinKer : DF -> DF ; ++ nagKelvinKer calculates an approximation to the Kelvin function ++ \spad{ker}, using the NAG routine S19ACF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s19acf. nagKelvinKei : DF -> DF ; ++ nagKelvinKei calculates an approximation to the Kelvin function ++ \spad{kei}, using the NAG routine S19ADF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s19adf. nagFresnelS : DF -> DF ; ++ nagFresnelS calculates an approximation to the Fresnel integral ++ \spad{S}, defined by #if saturn ++ \[S(x) = \int_{0}^{x}\sin\left(\frac{\pi}{2}t^{2}\right)\,dt\] #else ++ \spad{S(x) = integrate(sin(%pi/2*t^2),t=0..x)} #endif ++ using the NAG routine S20ACF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s20acf. nagFresnelC : DF -> DF ; ++ nagFresnelC calculates an approximation to the Fresnel integral ++ \spad{C}, defined by #if saturn ++ \[C(x) = \int_{0}^{x}\cos\left(\frac{\pi}{2}t^{2}\right)\,dt\] #else ++ \spad{C(x) = integrate(cos(%pi/2*t^2),t=0..x)} #endif ++ using the NAG routine S20ADF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s20adf. nagEllipticIntegralRC : (DF, DF) -> DF ; ++ nagEllipticIntegralRC(x,y) calculates an approximation to the ++ elementary (degenerate symmetrised elliptic) integral #if saturn ++ \[R_{C}(x,y) = ++ \frac{1}{2}\int_{0}^{\infty}\frac{dt}{\sqrt{t+x}(t+y)}\] #else ++ \spad{RC(x,y) = 1/2*integrate(1/(sqrt(t+x)*(t+y)),t=0..\infinity)} #endif ++ using the NAG routine S21BAF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s21baf. nagEllipticIntegralRF : (DF, DF, DF) -> DF ; ++ nagEllipticIntegralRF(x,y,z) calculates an approximation to the ++ symmetrised elliptic integral of the first kind, #if saturn ++ \[R_{F}(x, y, z) = ++ \frac{1}{2}\int_{0}^{\infty}\frac{dt}{\sqrt{(t+x)(t+y)(t+z)}}\] #else ++ \spad{RF(x,y,z) = ++ 1/2*integrate(1/sqrt((t+x)*(t+y)*(t+z)),t=0..\infinity)} #endif ++ using the NAG routine S21BBF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s21bbf. nagEllipticIntegralRD : (DF, DF, DF) -> DF ; ++ nagEllipticIntegralRD(x,y,z) calculates an approximation to the ++ symmetrised elliptic integral of the second kind, #if saturn ++ \[R_{D}(x, y, z) = ++ \frac{3}{2}\int_{0}^{\infty}\frac{dt}{\sqrt{(t+x)(t+y)(t+z)^{3}}}\] #else ++ \spad{RD(x,y,z) = ++ 1/2*integrate(1/sqrt((t+x)*(t+y)*(t+z)^3),t=0..\infinity)} #endif ++ using the NAG routine S21BCF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s21bcf. nagEllipticIntegralRJ : (DF, DF, DF, DF) -> DF ; ++ nagEllipticIntegralRJ(x,y,z,rho) calculates an approximation to ++ the symmetrised elliptic integral of the third kind, #if saturn ++ \[R_{J}(x, y, z, \rho ) = ++ \frac{3}{2}\int_{0}^{\infty} ++ \frac{dt}{(t+\rho)\sqrt{(t+x)(t+y)(t+z)}}\] #else ++ \spad{RJ(x,y,z,rho) = ++ 3/2*integrate(1/((t+rho)*sqrt((t+x)*(t+y)*(t+z))),t=0..\infinity))u} #endif ++ using the NAG routine S21BDF. ++ For detailed information on the accuracy, please consult the NAG ++ manual via the Browser page for the operation s21bdf. } == add { import from NagSpecialFunctionsPackage ; import from NagResultChecks ; local ipIfail : Integer := -1 ; nagExpInt(x : DF) : DF == checkResult(s13aaf(x,ipIfail), "s13aafResult", "S13AAF") ; nagCosInt(x : DF) : DF == checkResult(s13acf(x,ipIfail), "s13acfResult", "S13ACF") ; nagSinInt(x : DF) : DF == checkResult(s13adf(x,ipIfail), "s13adfResult", "S13ADF") ; nagIncompleteGammaP(a : DF, x : DF) : DF == checkResult(s14baf(a,x,0.0,ipIfail), "p", "S14BAF") ; nagIncompleteGammaP(a : DF, x : DF, tol : DF) : DF == checkResult(s14baf(a,x,tol,ipIfail), "p", "S14BAF") ; nagIncompleteGammaQ(a : DF, x : DF) : DF == checkResult(s14baf(a,x,0.0,ipIfail), "q", "S14BAF") ; nagIncompleteGammaQ(a : DF, x : DF, tol : DF) : DF == checkResult(s14baf(a,x,tol,ipIfail), "q", "S14BAF") ; nagErfC(x : DF) : DF == checkResult(s15adf(x,ipIfail), "s15adfResult", "S15ADF") ; nagErf(x : DF) : DF == checkResult(s15aef(x,ipIfail), "s15aefResult", "S15AEF") ; nagDAiryAi(x : DF) : DF == checkResult(s17ajf(x,ipIfail), "s17ajfResult", "S17AJF") ; nagDAiryAi(z : CDF) : CDF == checkCxResult(s17dgf("d",z,"u",ipIfail), "ai", "S17DGF") ; nagDAiryBi(x : DF) : DF == checkResult(s17akf(x,ipIfail), "s17akfResult", "S17AKF") ; nagDAiryBi(z : CDF) : CDF == checkCxResult(s17dhf("d",z,"u",ipIfail), "bi", "S17DHF") ; nagScaledDAiryAi(z : CDF) : CDF == checkCxResult(s17dgf("d",z,"s",ipIfail), "ai", "S17DGF") ; nagScaledDAiryBi(z : CDF) : CDF == checkCxResult(s17dhf("d",z,"s",ipIfail), "bi", "S17DHF") ; nagHankelH1(order : DF, z : CDF, n : INT) : Matrix CDF == checkMxCDF(s17dlf(1,order,z,n,"u",ipIfail), "cy", "S17DLF") ; nagHankelH2(order : DF, z : CDF, n : INT) : Matrix CDF == checkMxCDF(s17dlf(2,order,z,n,"u",ipIfail), "cy", "S17DLF") ; nagScaledHankelH1(order : DF, z : CDF, n : INT) : Matrix CDF == checkMxCDF(s17dlf(1,order,z,n,"s",ipIfail), "cy", "S17DLF") ; nagScaledHankelH2(order : DF, z : CDF, n : INT) : Matrix CDF == checkMxCDF(s17dlf(2,order,z,n,"s",ipIfail), "cy", "S17DLF") ; nagKelvinBer(x : DF) : DF == checkResult(s19aaf(x,ipIfail), "s19aafResult", "S19AAF") ; nagKelvinBei(x : DF) : DF == checkResult(s19abf(x,ipIfail), "s19abfResult", "S19ABF") ; nagKelvinKer(x : DF) : DF == checkResult(s19acf(x,ipIfail), "s19acfResult", "S19ACF") ; nagKelvinKei(x : DF) : DF == checkResult(s19adf(x,ipIfail), "s19adfResult", "S19ADF") ; nagFresnelS(x : DF) : DF == checkResult(s20acf(x,ipIfail), "s20acfResult", "S20ACF") ; nagFresnelC(x : DF) : DF == checkResult(s20adf(x,ipIfail), "s20adfResult", "S20ADF") ; nagEllipticIntegralRC(x : DF, y : DF) : DF == checkResult(s21baf(x,y,ipIfail), "s21bafResult", "S21BAF") ; nagEllipticIntegralRF(x : DF, y : DF, z : DF) : DF == checkResult(s21bbf(x,y,z,ipIfail), "s21bbfResult", "S21BBF") ; nagEllipticIntegralRD(x : DF, y : DF, z : DF) : DF == checkResult(s21bcf(x,y,z,ipIfail), "s21bcfResult", "S21BCF") ; nagEllipticIntegralRJ(x : DF, y : DF, z : DF, rho : DF) : DF == checkResult(s21bdf(x,y,z,rho,ipIfail), "s21bdfResult", "S21BDF") ; } #if NeverAssertThis -- Note that the conversions of Results from DoubleFloat to Float -- will become unnecessary if outputGeneral is extended to apply to -- DoubleFloat quantities. )lib nrc )lib nsfip outputGeneral 4 -- DF here means DoubleFloat. -- Results converted to Float as outputGeneral not working on DF. -- nagExpInt : DF -> DF ; nagExpInt(2) :: Float -- 0.0489 nagExpInt(-1) :: Float -- ** ABNORMAL EXIT from NAG Library routine S13AAF: IFAIL = 1 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S13AAF. The error number (IFAIL value) is 1, please consult the -- NAG manual via the Browser for diagnostic information. -- nagSinInt : DF -> DF ; nagSinInt(0) :: Float -- 0.0 nagSinInt(0.2) :: Float -- 0.1996 nagSinInt(0.4) :: Float -- 0.3965 nagSinInt(0.6) :: Float -- 0.5881 nagSinInt(0.8) :: Float -- 0.7721 nagSinInt(1) :: Float -- 0.9461 -- nagCosInt : DF -> DF ; nagCosInt(0.2) :: Float -- - 1.042 nagCosInt(0.4) :: Float -- - 0.3788 nagCosInt(0.6) :: Float -- - 0.02227 nagCosInt(0.8) :: Float -- 0.1983 nagCosInt(1) :: Float -- 0.3374 -- nagIncompleteGammaP : (DF, DF) -> DF ; (to machine precision) nagIncompleteGammaP(2,3) :: Float -- 0.8009 nagIncompleteGammaP(7,1) :: Float -- 0.00008324 nagIncompleteGammaP(0.5,99) :: Float -- 1.0 nagIncompleteGammaP(20,21) :: Float -- 0.6157 nagIncompleteGammaP(21,20) :: Float -- 0.4409 -- nagIncompleteGammaP : (DF, DF, DF) -> DF ; (to specified precision) nagIncompleteGammaP(7,1,0.1) :: Float -- 0.00008313 -- nagIncompleteGammaQ : (DF, DF) -> DF ; (to machine precision) nagIncompleteGammaQ(2,3) :: Float -- 0.1991 nagIncompleteGammaQ(7,1) :: Float -- 0.9999 nagIncompleteGammaQ(0.5,99) :: Float -- 0.5705 E -44 nagIncompleteGammaQ(20,21) :: Float -- 0.3843 nagIncompleteGammaQ(21,20) :: Float -- 0.5591 nagIncompleteGammaQ(25,14) :: Float -- 0.995 -- nagIncompleteGammaQ : (DF, DF, DF) -> DF ; (to specified precision) nagIncompleteGammaQ(25,14,0.1) :: Float -- 0.9953 -- nagErf : DF -> DF ; nagErf(-6) :: Float -- - 1.0 nagErf(-4.5) :: Float -- - 1.0 nagErf(-1) :: Float -- - 0.8427 nagErf(1) :: Float -- 0.8427 nagErf(4.5) :: Float -- 1.0 nagErf(6) :: Float -- 1.0 -- nagErfC : DF -> DF ; nagErfC(-10) :: Float -- 2.0 nagErfC(-1) :: Float -- 1.843 nagErfC(0) :: Float -- 1.0 nagErfC(1) :: Float -- 0.1573 nagErfC(15) :: Float -- 0.7213 E -99 -- nagDAiryAi : DF -> DF ; nagDAiryAi(-10) :: Float -- 0.9963 nagDAiryAi(-1) :: Float -- - 0.01016 nagDAiryAi(0) :: Float -- - 0.2588 nagDAiryAi(1) :: Float -- - 0.1591 nagDAiryAi(5) :: Float -- - 0.0002474 nagDAiryAi(10) :: Float -- - 0.3521 E -9 nagDAiryAi(20) :: Float -- - 0.7586 E -26 -- nagDAiryAi : CDF -> CDF ; nagDAiryAi(0.3+0.4*%i) :: Complex Float -- - 0.2612 + 0.03848 %i -- nagDAiryBi : DF -> DF ; nagDAiryBi(-10) :: Float -- 0.1194 nagDAiryBi(-1) :: Float -- 0.5924 nagDAiryBi(0) :: Float -- 0.4483 nagDAiryBi(1) :: Float -- 0.9324 nagDAiryBi(5) :: Float -- 1436.0 nagDAiryBi(10) :: Float -- 0.1429 E 10 nagDAiryBi(20) :: Float -- 0.9382 E 26 -- nagDAiryBi : CDF -> CDF ; nagDAiryBi(0.3+0.4*%i) :: Complex Float -- 0.4093 + 0.07966 %i -- nagScaledDAiryAi : CDF -> CDF ; nagScaledDAiryAi(0.3+0.4*%i) :: Complex Float -- - 0.2744 - 0.02356 %i -- nagScaledDAiryBi : CDF -> CDF ; nagScaledDAiryBi(0.3+0.4*%i) :: Complex Float -- 0.3924 + 0.07638 %i -- nagHankelH1 : (DF, CDF, Int) -> List CDF ; nagHankelH1(0,0.3+0.4*%i,2) :: Matrix Complex Float -- [0.3466 - 0.5588 %i - 0.7912 - 0.8178 %i] nagHankelH1(2.3,2,2) :: Matrix Complex Float -- [0.2721 - 0.7398 %i 0.08902 - 1.412 %i] nagHankelH1(2.12,-1,2) :: Matrix Complex Float -- [- 0.7722 - 1.693 %i 2.601 + 6.527 %i] -- nagHankelH2 : (DF, CDF, Int) -> List CDF ; nagHankelH2(6,3.1-1.6*%i,2) :: Matrix Complex Float -- [- 1.371 - 1.28 %i - 1.491 - 5.993 %i] -- nagScaledHankelH1 : (DF, CDF, Int) -> List CDF ; nagScaledHankelH1(0,0.3+0.4*%i,2) :: Matrix Complex Float -- [0.2477 - 0.9492 %i - 1.488 - 0.8166 %i] -- nagScaledHankelH2 : (DF, CDF, Int) -> List CDF ; nagScaledHankelH2(6,3.1-1.6*%i,2) :: Matrix Complex Float -- [7.05 + 6.052 %i 8.614 + 29.35 %i] -- nagKelvinBer : DF -> DF ; nagKelvinBer(0.1) :: Float -- 1.0 nagKelvinBer(1) :: Float -- 0.9844 nagKelvinBer(2.5) :: Float -- 0.4 nagKelvinBer(5) :: Float -- - 6.23 nagKelvinBer(10) :: Float -- 138.8 nagKelvinBer(15) :: Float -- - 2967.0 nagKelvinBer(60) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19AAF: IFAIL = 1 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19AAF. The error number (IFAIL value) is 1, please consult the -- NAG manual via the Browser for diagnostic information. nagKelvinBer(-1) :: Float -- 0.9844 -- nagKelvinBei : DF -> DF ; nagKelvinBei(0.1) :: Float -- 0.0025 nagKelvinBei(1) :: Float -- 0.2496 nagKelvinBei(2.5) :: Float -- 1.457 nagKelvinBei(5) :: Float -- 0.116 nagKelvinBei(10) :: Float -- 56.37 nagKelvinBei(15) :: Float -- - 2953.0 nagKelvinBei(60) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ABF: IFAIL = 1 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ABF. The error number (IFAIL value) is 1, please consult the -- NAG manual via the Browser for diagnostic information. nagKelvinBei(-1) :: Float -- 0.2496 -- nagKelvinKer : DF -> DF ; nagKelvinKer(0) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ACF: IFAIL = 2 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ACF. The error number (IFAIL value) is 2, please consult the -- NAG manual via the Browser for diagnostic information. nagKelvinKer(0.1) :: Float -- 2.42 nagKelvinKer(1) :: Float -- 0.2867 nagKelvinKer(2.5) :: Float -- - 0.06969 nagKelvinKer(5) :: Float -- - 0.01151 nagKelvinKer(10) :: Float -- 0.0001295 nagKelvinKer(15) :: Float -- - 0.1514 E -7 nagKelvinKer(1100) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ACF: IFAIL = 1 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ACF. The error number (IFAIL value) is 1, please consult the -- NAG manual via the Browser for diagnostic information. nagKelvinKer(-1) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ACF: IFAIL = 2 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ACF. The error number (IFAIL value) is 2, please consult the -- NAG manual via the Browser for diagnostic information. -- nagKelvinKei : DF -> DF ; nagKelvinKei(0) :: Float -- - 0.7854 nagKelvinKei(0.1) :: Float -- - 0.7769 nagKelvinKei(1) :: Float -- - 0.495 nagKelvinKei(2.5) :: Float -- - 0.1107 nagKelvinKei(5) :: Float -- 0.01119 nagKelvinKei(10) :: Float -- - 0.0003075 nagKelvinKei(15) :: Float -- 0.000007963 nagKelvinKei(1100) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ADF: IFAIL = 1 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ADF. The error number (IFAIL value) is 1, please consult the -- NAG manual via the Browser for diagnostic information. nagKelvinKei(-1) :: Float -- ** ABNORMAL EXIT from NAG Library routine S19ADF: IFAIL = 2 -- ** NAG soft failure - control returned -- -- Error signalled from user code: -- An error was detected when calling the NAG Library routine -- S19ADF. The error number (IFAIL value) is 2, please consult the -- NAG manual via the Browser for diagnostic information. -- nagFresnelS : DF -> DF ; nagFresnelS(0) :: Float -- 0.0 nagFresnelS(0.5) :: Float -- 0.06473 nagFresnelS(1) :: Float -- 0.4383 nagFresnelS(2) :: Float -- 0.3434 nagFresnelS(4) :: Float -- 0.4205 nagFresnelS(5) :: Float -- 0.4992 nagFresnelS(6) :: Float -- 0.447 nagFresnelS(8) :: Float -- 0.4602 nagFresnelS(10) :: Float -- 0.4682 nagFresnelS(-1) :: Float -- - 0.4383 nagFresnelS(1000) :: Float -- 0.4997 -- nagFresnelC : DF -> DF ; nagFresnelC(0) :: Float -- 0.0 nagFresnelC(0.5) :: Float -- 0.4923 nagFresnelC(1) :: Float -- 0.7799 nagFresnelC(2) :: Float -- 0.4883 nagFresnelC(4) :: Float -- 0.4984 nagFresnelC(5) :: Float -- 0.5636 nagFresnelC(6) :: Float -- 0.4995 nagFresnelC(8) :: Float -- 0.4998 nagFresnelC(10) :: Float -- 0.4999 nagFresnelC(-1) :: Float -- - 0.7799 nagFresnelC(1000) :: Float -- 0.5 -- nagEllipticIntegralRC : (DF, DF) -> DF ; nagEllipticIntegralRC(0.5,1) :: Float -- 1.111 nagEllipticIntegralRC(1,1) :: Float -- 1.0 nagEllipticIntegralRC(1.5,1) :: Float -- 0.9312 -- nagEllipticIntegralRD : (DF, DF, DF) -> DF ; nagEllipticIntegralRD(0.5,0.5,1) :: Float -- 1.479 nagEllipticIntegralRD(0.5,1,1) :: Float -- 1.211 nagEllipticIntegralRD(0.5,1.5,1) :: Float -- 1.061 nagEllipticIntegralRD(1,1,1) :: Float -- 1.0 nagEllipticIntegralRD(1,1.5,1) :: Float -- 0.8805 nagEllipticIntegralRD(1.5,1.5,1) :: Float -- 0.7775 -- nagEllipticIntegralRF : (DF, DF, DF) -> DF ; nagEllipticIntegralRF(0.5,1,1.5) :: Float -- 1.028 nagEllipticIntegralRF(1,1.5,2) :: Float -- 0.826 nagEllipticIntegralRF(1.5,2,2.5) :: Float -- 0.7116 -- nagEllipticIntegralRJ : (DF, DF, DF, DF) -> DF ; nagEllipticIntegralRJ(0.5,0.5,0.5,2) :: Float -- 1.118 nagEllipticIntegralRJ(0.5,0.5,1,2) :: Float -- 0.9221 nagEllipticIntegralRJ(0.5,0.5,1.5,2) :: Float -- 0.8115 nagEllipticIntegralRJ(0.5,1,1,2) :: Float -- 0.7671 nagEllipticIntegralRJ(0.5,1,1.5,2) :: Float -- 0.6784 nagEllipticIntegralRJ(0.5,1.5,1.5,2) :: Float -- 0.6017 nagEllipticIntegralRJ(1,1,1,2) :: Float -- 0.6438 nagEllipticIntegralRJ(1,1,1.5,2) :: Float -- 0.5722 nagEllipticIntegralRJ(1,1.5,1.5,2) :: Float -- 0.5101 nagEllipticIntegralRJ(1.5,1.5,1.5,2) :: Float -- 0.4561 outputGeneral() output "End of tests" #endif @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- NagSpecialFunctionsInterfacePackage -- To test: -- sed -ne '1,/^#if NeverAssertThis/d;/#endif/d;p' < nsfip.as > nsfip.input -- axiom -- )set nag host <some machine running nagd> -- )r nsfip.input #unassert saturn #include "axiom.as" DF ==> DoubleFloat ; CDF ==> Complex DoubleFloat ; MCDF ==> Matrix Complex DoubleFloat ; INT ==> Integer ; RSLT ==> Result ; SMBL ==> Symbol ; STRG ==> String ; <<NagSpecialFunctionsInterfacePackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}