\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra nregset.spad} \author{Marc Moreno Maza} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category NTSCAT NormalizedTriangularSetCategory} <<category NTSCAT NormalizedTriangularSetCategory>>= )abbrev category NTSCAT NormalizedTriangularSetCategory ++ Author: Marc Moreno Maza ++ Date Created: 10/07/1998 ++ Date Last Updated: 12/12/1998 ++ Basic Functions: ++ Related Constructors: ++ Also See: essai Graphisme ++ AMS Classifications: ++ Keywords: polynomial, multivariate, ordered variables set ++ Description: ++ The category of normalized triangular sets. A triangular ++ set \spad{ts} is said normalized if for every algebraic ++ variable \spad{v} of \spad{ts} the polynomial \spad{select(ts,v)} ++ is normalized w.r.t. every polynomial in \spad{collectUnder(ts,v)}. ++ A polynomial \spad{p} is said normalized w.r.t. a non-constant ++ polynomial \spad{q} if \spad{p} is constant or \spad{degree(p,mdeg(q)) = 0} ++ and \spad{init(p)} is normalized w.r.t. \spad{q}. One of the important ++ features of normalized triangular sets is that they are regular sets.\newline ++ References : ++ [1] D. LAZARD "A new method for solving algebraic systems of ++ positive dimension" Discr. App. Math. 33:147-160,1991 ++ [2] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories ++ of Triangular Sets" Journal of Symbol. Comp. (to appear) ++ [3] M. MORENO MAZA and R. RIOBOO "Computations of gcd over ++ algebraic towers of simple extensions" In proceedings of AAECC11 ++ Paris, 1995. ++ [4] M. MORENO MAZA "Calculs de pgcd au-dessus des tours ++ d'extensions simples et resolution des systemes d'equations ++ algebriques" These, Universite P.etM. Curie, Paris, 1997. NormalizedTriangularSetCategory(R:GcdDomain,E:OrderedAbelianMonoidSup,_ V:OrderedSet,P:RecursivePolynomialCategory(R,E,V)): Category == RegularTriangularSetCategory(R,E,V,P) @ \section{package NORMPK NormalizationPackage} <<package NORMPK NormalizationPackage>>= )abbrev package NORMPK NormalizationPackage ++ Author: Marc Moreno Maza ++ Date Created: 09/23/1998 ++ Date Last Updated: 12/16/1998 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Description: ++ A package for computing normalized assocites of univariate polynomials ++ with coefficients in a tower of simple extensions of a field.\newline ++ References : ++ [1] D. LAZARD "A new method for solving algebraic systems of ++ positive dimension" Discr. App. Math. 33:147-160,1991 ++ [2] M. MORENO MAZA and R. RIOBOO "Computations of gcd over ++ algebraic towers of simple extensions" In proceedings of AAECC11 ++ Paris, 1995. ++ [3] M. MORENO MAZA "Calculs de pgcd au-dessus des tours ++ d'extensions simples et resolution des systemes d'equations ++ algebriques" These, Universite P.etM. Curie, Paris, 1997. ++ Version: 1. NormalizationPackage(R,E,V,P,TS): Exports == Implementation where R : GcdDomain E : OrderedAbelianMonoidSup V : OrderedSet P : RecursivePolynomialCategory(R,E,V) TS : RegularTriangularSetCategory(R,E,V,P) N ==> NonNegativeInteger Z ==> Integer B ==> Boolean S ==> String K ==> Fraction R LP ==> List P PWT ==> Record(val : P, tower : TS) BWT ==> Record(val : Boolean, tower : TS) LpWT ==> Record(val : (List P), tower : TS) Split ==> List TS --KeyGcd ==> Record(arg1: P, arg2: P, arg3: TS, arg4: B) --EntryGcd ==> List PWT --HGcd ==> TabulatedComputationPackage(KeyGcd, EntryGcd) --KeyInvSet ==> Record(arg1: P, arg3: TS) --EntryInvSet ==> List TS --HInvSet ==> TabulatedComputationPackage(KeyInvSet, EntryInvSet) polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P) regsetgcdpack ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,TS) Exports == with recip: (P, TS) -> Record(num:P,den:P) ++ \axiom{recip(p,ts)} returns the inverse of \axiom{p} w.r.t \spad{ts} ++ assuming that \axiom{p} is invertible w.r.t \spad{ts}. normalizedAssociate: (P, TS) -> P ++ \axiom{normalizedAssociate(p,ts)} returns a normalized polynomial ++ \axiom{n} w.r.t. \spad{ts} such that \axiom{n} and \axiom{p} are ++ associates w.r.t \spad{ts} and assuming that \axiom{p} is invertible ++ w.r.t \spad{ts}. normalize: (P, TS) -> List PWT ++ \axiom{normalize(p,ts)} normalizes \axiom{p} w.r.t \spad{ts}. outputArgs: (S, S, P, TS) -> Void ++ \axiom{outputArgs(s1,s2,p,ts)} ++ is an internal subroutine, exported only for developement. normInvertible?: (P, TS) -> List BWT ++ \axiom{normInvertible?(p,ts)} ++ is an internal subroutine, exported only for developement. Implementation == add if TS has SquareFreeRegularTriangularSetCategory(R,E,V,P) then normInvertible?(p:P, ts:TS): List BWT == stoseInvertible?_sqfreg(p,ts)$regsetgcdpack else normInvertible?(p:P, ts:TS): List BWT == stoseInvertible?_reg(p,ts)$regsetgcdpack if (R has RetractableTo(Integer)) and (V has ConvertibleTo(Symbol)) then outputArgs(s1:S, s2: S, p:P,ts:TS): Void == if not empty? s1 then output(s1, p::OutputForm)$OutputPackage if not empty? s1 then output(s1,(convert(p)@String)::OutputForm)$OutputPackage output(" ")$OutputPackage if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage empty? s2 => void() output(s2,("[")::OutputForm)$OutputPackage lp: List P := members(ts) for q in lp repeat output((convert(q)@String)::OutputForm)$OutputPackage output("]")$OutputPackage output(" ")$OutputPackage else outputArgs(s1:S, s2: S, p:P,ts:TS): Void == if not empty? s1 then output(s1, p::OutputForm)$OutputPackage output(" ")$OutputPackage if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage output(" ")$OutputPackage recip(p:P,ts:TS): Record(num:P, den:P) == -- ASSUME p is invertible w.r.t. ts -- ASSUME mvar(p) is algebraic w.r.t. ts v := mvar(p) ts_v := select(ts,v)::P d : P n : P if mdeg(p) < mdeg(ts_v) then hesrg2 := halfExtendedSubResultantGcd2(ts_v,p)$P d := hesrg2.gcd n := hesrg2.coef2 else hesrg1 := halfExtendedSubResultantGcd1(p,ts_v)$P d := hesrg1.gcd n := hesrg1.coef1 g := gcd(n,d) (n, d) := ((n exquo g)::P, (d exquo g)::P) remn, remd: Record(rnum:R,polnum:P,den:R) remn := remainder(n,ts); remd := remainder(d,ts) cn := remn.rnum; pn := remn.polnum; dn := remn.den cd := remd.rnum; pd := remd.polnum; dp := remd.den k: K := (cn / cd) * (dp / dn) pn := removeZero(pn,ts) pd := removeZero(pd,ts) [numer(k) * pn, denom(k) * pd]$Record(num:P, den:P) normalizedAssociate(p:P,ts:TS): P == -- ASSUME p is invertible or zero w.r.t. ts empty? ts => p zero?(p) => p ground?(p) => 1 zero? initiallyReduce(init(p),ts) => error "in normalizedAssociate$NORMPK: bad #1" vp := mvar(p) ip: P := p mp: P := 1 tp: P := 0 while not ground?(ip) repeat v := mvar(ip) if algebraic?(v,ts) then if v = vp then ts_v := select(ts,v)::P ip := lastSubResultant(ip,ts_v)$P ip := remainder(ip,ts).polnum -- ip := primitivePart stronglyReduce(ip,ts) ip := primitivePart initiallyReduce(ip,ts) else qr := recip(ip,ts) ip := qr.den tp := qr.num * tp zero? ip => outputArgs("p = ", " ts = ",p,ts) error "in normalizedAssociate$NORMPK: should never happen !" else tp := tail(ip) * mp + tp mp := mainMonomial(ip) * mp ip := init(ip) r := ip * mp + tp r := remainder(r,ts).polnum -- primitivePart stronglyReduce(r,ts) primitivePart initiallyReduce(r,ts) normalize(p: P, ts: TS): List PWT == zero? p => [[p,ts]$PWT] ground? p => [[1,ts]$PWT] zero? initiallyReduce(init(p),ts) => error "in normalize$NORMPK: init(#1) reduces to 0 w.r.t. #2" --output("Entering normalize")$OutputPackage --outputArgs("p = ", " ts = ",p,ts) --output("Calling normInvertible?")$OutputPackage lbwt: List BWT := normInvertible?(p,ts) --output("Result is: ")$OutputPackage --output(lbwt::OutputForm)$OutputPackage lpwt: List PWT := [] for bwt in lbwt repeat us := bwt.tower q := remainder(p,us).polnum q := removeZero(q,us) bwt.val => --output("Calling normalizedAssociate")$OutputPackage --outputArgs("q = ", " us = ",q,us) lpwt := cons([normalizedAssociate(q,us)@P,us]$PWT, lpwt) --output("Leaving normalizedAssociate")$OutputPackage zero? q => lpwt := cons([0$P,us]$PWT, lpwt) lpwt := concat(normalize(q,us)@(List PWT),lpwt) lpwt @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category NTSCAT NormalizedTriangularSetCategory>> <<package NORMPK NormalizationPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}