\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra nlode.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package NODE1 NonLinearFirstOrderODESolver} <<package NODE1 NonLinearFirstOrderODESolver>>= )abbrev package NODE1 NonLinearFirstOrderODESolver ++ Author: Manuel Bronstein ++ Date Created: 2 September 1991 ++ Date Last Updated: 14 October 1994 ++ Description: NonLinearFirstOrderODESolver provides a function ++ for finding closed form first integrals of nonlinear ordinary ++ differential equations of order 1. ++ Keywords: differential equation, ODE NonLinearFirstOrderODESolver(R, F): Exports == Implementation where R: Join(EuclideanDomain, RetractableTo Integer, LinearlyExplicitRingOver Integer, CharacteristicZero) F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory, PrimitiveFunctionCategory) N ==> NonNegativeInteger Q ==> Fraction Integer UQ ==> Union(Q, "failed") OP ==> BasicOperator SY ==> Symbol K ==> Kernel F U ==> Union(F, "failed") P ==> SparseMultivariatePolynomial(R, K) REC ==> Record(coef:Q, logand:F) SOL ==> Record(particular: F,basis: List F) BER ==> Record(coef1:F, coefn:F, exponent:N) Exports ==> with solve: (F, F, OP, SY) -> U ++ solve(M(x,y), N(x,y), y, x) returns \spad{F(x,y)} such that ++ \spad{F(x,y) = c} for a constant \spad{c} is a first integral ++ of the equation \spad{M(x,y) dx + N(x,y) dy = 0}, or ++ "failed" if no first-integral can be found. Implementation ==> add import ODEIntegration(R, F) import ElementaryFunctionODESolver(R, F) -- recursive dependency! checkBernoulli : (F, F, K) -> Union(BER, "failed") solveBernoulli : (BER, OP, SY, F) -> Union(F, "failed") checkRiccati : (F, F, K) -> Union(List F, "failed") solveRiccati : (List F, OP, SY, F) -> Union(F, "failed") partSolRiccati : (List F, OP, SY, F) -> Union(F, "failed") integratingFactor: (F, F, SY, SY) -> U unk := new()$SY kunk:K := kernel unk solve(m, n, y, x) == -- first replace the operator y(x) by a new symbol z in m(x,y) and n(x,y) lk:List(K) := [retract(yx := y(x::F))@K] lv:List(F) := [kunk::F] mm := eval(m, lk, lv) nn := eval(n, lk, lv) -- put over a common denominator (to balance m and n) d := lcm(denom mm, denom nn)::F mm := d * mm nn := d * nn -- look for an integrating factor mu (u := integratingFactor(mm, nn, unk, x)) case F => mu := u::F mm := mm * mu nn := nn * mu eval(int(mm,x) + int(nn-int(differentiate(mm,unk),x), unk),[kunk],[yx]) -- check for Bernoulli equation (w := checkBernoulli(m, n, k1 := first lk)) case BER => solveBernoulli(w::BER, y, x, yx) -- check for Riccati equation (v := checkRiccati(m, n, k1)) case List(F) => solveRiccati(v::List(F), y, x, yx) "failed" -- look for an integrating factor integratingFactor(m, n, y, x) == -- check first for exactness zero?(d := differentiate(m, y) - differentiate(n, x)) => 1 -- look for an integrating factor involving x only not member?(y, variables(f := d / n)) => expint(f, x) -- look for an integrating factor involving y only not member?(x, variables(f := - d / m)) => expint(f, y) -- room for more techniques later on (e.g. Prelle-Singer etc...) "failed" -- check whether the equation is of the form -- dy/dx + p(x)y + q(x)y^N = 0 with N > 1 -- i.e. whether m/n is of the form p(x) y + q(x) y^N -- returns [p, q, N] if the equation is in that form checkBernoulli(m, n, ky) == r := denom(f := m / n)::F (not freeOf?(r, y := ky::F)) or (d := degree(p := univariate(numer f, ky))) < 2 or not one? degree(pp := reductum p) or reductum(pp) ~= 0 or (not freeOf?(a := (leadingCoefficient(pp)::F), y)) or (not freeOf?(b := (leadingCoefficient(p)::F), y)) => "failed" [a / r, b / r, d] -- solves the equation dy/dx + rec.coef1 y + rec.coefn y^rec.exponent = 0 -- the change of variable v = y^{1-n} transforms the above equation to -- dv/dx + (1 - n) p v + (1 - n) q = 0 solveBernoulli(rec, y, x, yx) == n1 := 1 - rec.exponent::Integer deq := differentiate(yx, x) + n1 * rec.coef1 * yx + n1 * rec.coefn sol := solve(deq, y, x)::SOL -- can always solve for order 1 -- if v = vp + c v0 is the general solution of the linear equation, then -- the general first integral for the Bernoulli equation is -- (y^{1-n} - vp) / v0 = c for any constant c (yx**n1 - sol.particular) / first(sol.basis) -- check whether the equation is of the form -- dy/dx + q0(x) + q1(x)y + q2(x)y^2 = 0 -- i.e. whether m/n is a quadratic polynomial in y. -- returns the list [q0, q1, q2] if the equation is in that form checkRiccati(m, n, ky) == q := denom(f := m / n)::F (not freeOf?(q, y := ky::F)) or degree(p := univariate(numer f, ky)) > 2 or (not freeOf?(a0 := (coefficient(p, 0)::F), y)) or (not freeOf?(a1 := (coefficient(p, 1)::F), y)) or (not freeOf?(a2 := (coefficient(p, 2)::F), y)) => "failed" [a0 / q, a1 / q, a2 / q] -- solves the equation dy/dx + l.1 + l.2 y + l.3 y^2 = 0 solveRiccati(l, y, x, yx) == -- get first a particular solution (u := partSolRiccati(l, y, x, yx)) case "failed" => "failed" -- once a particular solution yp is known, the general solution is of the -- form y = yp + 1/v where v satisfies the linear 1st order equation -- v' - (l.2 + 2 l.3 yp) v = l.3 deq := differentiate(yx, x) - (l.2 + 2 * l.3 * u::F) * yx - l.3 gsol := solve(deq, y, x)::SOL -- can always solve for order 1 -- if v = vp + c v0 is the general solution of the above equation, then -- the general first integral for the Riccati equation is -- (1/(y - yp) - vp) / v0 = c for any constant c (inv(yx - u::F) - gsol.particular) / first(gsol.basis) -- looks for a particular solution of dy/dx + l.1 + l.2 y + l.3 y^2 = 0 partSolRiccati(l, y, x, yx) == -- we first do the change of variable y = z / l.3, which transforms -- the equation into dz/dx + l.1 l.3 + (l.2 - l.3'/l.3) z + z^2 = 0 q0 := l.1 * (l3 := l.3) q1 := l.2 - differentiate(l3, x) / l3 -- the equation dz/dx + q0 + q1 z + z^2 = 0 is transformed by the change -- of variable z = w'/w into the linear equation w'' + q1 w' + q0 w = 0 lineq := differentiate(yx, x, 2) + q1 * differentiate(yx, x) + q0 * yx -- should be made faster by requesting a particular nonzero solution only (not((gsol := solve(lineq, y, x)) case SOL)) or empty?(bas := (gsol::SOL).basis) => "failed" differentiate(first bas, x) / (l3 * first bas) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- Compile order for the differential equation solver: -- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad <<package NODE1 NonLinearFirstOrderODESolver>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}