\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra nlinsol.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package RETSOL RetractSolvePackage} <<package RETSOL RetractSolvePackage>>= )abbrev package RETSOL RetractSolvePackage ++ Author: Manuel Bronstein ++ Date Created: 31 October 1991 ++ Date Last Updated: 31 October 1991 ++ Description: ++ RetractSolvePackage is an interface to \spadtype{SystemSolvePackage} ++ that attempts to retract the coefficients of the equations before ++ solving. RetractSolvePackage(Q, R): Exports == Implementation where Q: IntegralDomain R: Join(IntegralDomain, RetractableTo Q) PQ ==> Polynomial Q FQ ==> Fraction PQ SY ==> Symbol P ==> Polynomial R F ==> Fraction P EQ ==> Equation SSP ==> SystemSolvePackage Exports ==> with solveRetract: (List P, List SY) -> List List EQ F ++ solveRetract(lp,lv) finds the solutions of the list lp of ++ rational functions with respect to the list of symbols lv. ++ The function tries to retract all the coefficients of the equations ++ to Q before solving if possible. Implementation ==> add LEQQ2F : List EQ FQ -> List EQ F FQ2F : FQ -> F PQ2P : PQ -> P QIfCan : List P -> Union(List FQ, "failed") PQIfCan: P -> Union(FQ, "failed") PQ2P p == map(#1::R, p)$PolynomialFunctions2(Q, R) FQ2F f == PQ2P numer f / PQ2P denom f LEQQ2F l == [equation(FQ2F lhs eq, FQ2F rhs eq) for eq in l] solveRetract(lp, lv) == (u := QIfCan lp) case "failed" => solve([p::F for p in lp]$List(F), lv)$SSP(R) [LEQQ2F l for l in solve(u::List(FQ), lv)$SSP(Q)] QIfCan l == ans:List(FQ) := empty() for p in l repeat (u := PQIfCan p) case "failed" => return "failed" ans := concat(u::FQ, ans) ans PQIfCan p == (u := mainVariable p) case "failed" => (r := retractIfCan(ground p)@Union(Q,"failed")) case Q => r::Q::PQ::FQ "failed" up := univariate(p, s := u::SY) ans:FQ := 0 while up ~= 0 repeat (v := PQIfCan leadingCoefficient up) case "failed" => return "failed" ans := ans + monomial(1, s, degree up)$PQ * (v::FQ) up := reductum up ans @ \section{package NLINSOL NonLinearSolvePackage} <<package NLINSOL NonLinearSolvePackage>>= )abbrev package NLINSOL NonLinearSolvePackage ++ Author: Manuel Bronstein ++ Date Created: 31 October 1991 ++ Date Last Updated: 26 June 1992 ++ Description: ++ NonLinearSolvePackage is an interface to \spadtype{SystemSolvePackage} ++ that attempts to retract the coefficients of the equations before ++ solving. The solutions are given in the algebraic closure of R whenever ++ possible. NonLinearSolvePackage(R:IntegralDomain): Exports == Implementation where Z ==> Integer Q ==> Fraction Z SY ==> Symbol P ==> Polynomial R F ==> Fraction P EQ ==> Equation F SSP ==> SystemSolvePackage SOL ==> RetractSolvePackage Exports ==> with solveInField: (List P, List SY) -> List List EQ ++ solveInField(lp,lv) finds the solutions of the list lp of ++ rational functions with respect to the list of symbols lv. solveInField: List P -> List List EQ ++ solveInField(lp) finds the solution of the list lp of rational ++ functions with respect to all the symbols appearing in lp. solve: (List P, List SY) -> List List EQ ++ solve(lp,lv) finds the solutions in the algebraic closure of R ++ of the list lp of ++ rational functions with respect to the list of symbols lv. solve: List P -> List List EQ ++ solve(lp) finds the solution in the algebraic closure of R ++ of the list lp of rational ++ functions with respect to all the symbols appearing in lp. Implementation ==> add solveInField l == solveInField(l, "setUnion"/[variables p for p in l]) if R has AlgebraicallyClosedField then import RationalFunction(R) expandSol: List EQ -> List List EQ RIfCan : F -> Union(R, "failed") addRoot : (EQ, List List EQ) -> List List EQ allRoots : List P -> List List EQ evalSol : (List EQ, List EQ) -> List EQ solve l == solve(l, "setUnion"/[variables p for p in l]) solve(lp, lv) == concat([expandSol sol for sol in solveInField(lp, lv)]) addRoot(eq, l) == [concat(eq, sol) for sol in l] evalSol(ls, l) == [equation(lhs eq, eval(rhs eq, l)) for eq in ls] -- converts [p1(a1),...,pn(an)] to -- [[a1=v1,...,an=vn]] where vi ranges over all the zeros of pi allRoots l == empty? l => [empty()$List(EQ)] z := allRoots rest l s := mainVariable(p := first l)::SY::P::F concat [addRoot(equation(s, a::P::F), z) for a in zerosOf univariate p] expandSol l == lassign := lsubs := empty()$List(EQ) luniv := empty()$List(P) for eq in l repeat if retractIfCan(lhs eq)@Union(SY, "failed") case SY then if RIfCan(rhs eq) case R then lassign := concat(eq, lassign) else lsubs := concat(eq, lsubs) else if ((u := retractIfCan(lhs eq)@Union(P, "failed")) case P) and one?(# variables(u::P)) and ((r := RIfCan rhs eq) case R) then luniv := concat(u::P - r::R::P, luniv) else return [l] empty? luniv => [l] [concat(z, concat(evalSol(lsubs,z), lassign)) for z in allRoots luniv] RIfCan f == ((n := retractIfCan(numer f)@Union(R,"failed")) case R) and ((d := retractIfCan(denom f)@Union(R,"failed")) case R) => n::R / d::R "failed" else solve l == solveInField l solve(lp, lv) == solveInField(lp, lv) -- 'else if' is doubtful with this compiler so all 3 conditions are explicit if (not(R is Q)) and (R has RetractableTo Q) then solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Q, R) if (not(R is Z)) and (not(R has RetractableTo Q)) and (R has RetractableTo Z) then solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Z, R) if (not(R is Z)) and (not(R has RetractableTo Q)) and (not(R has RetractableTo Z)) then solveInField(lp, lv) == solve([p::F for p in lp]$List(F), lv)$SSP(R) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- Compile order for the differential equation solver: -- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad <<package RETSOL RetractSolvePackage>> <<package NLINSOL NonLinearSolvePackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}