\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra nlinsol.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package RETSOL RetractSolvePackage}
<<package RETSOL RetractSolvePackage>>=
)abbrev package RETSOL RetractSolvePackage
++ Author: Manuel Bronstein
++ Date Created: 31 October 1991
++ Date Last Updated: 31 October 1991
++ Description:
++ RetractSolvePackage is an interface to \spadtype{SystemSolvePackage}
++ that attempts to retract the coefficients of the equations before
++ solving.

RetractSolvePackage(Q, R): Exports == Implementation where
  Q: IntegralDomain
  R: Join(IntegralDomain, RetractableTo Q)

  PQ  ==> Polynomial Q
  FQ  ==> Fraction PQ
  SY  ==> Symbol
  P   ==> Polynomial R
  F   ==> Fraction P
  EQ  ==> Equation
  SSP ==> SystemSolvePackage

  Exports ==> with
    solveRetract: (List P, List SY) -> List List EQ F
      ++ solveRetract(lp,lv) finds the solutions of the list lp of
      ++ rational functions with respect to the list of symbols lv.
      ++ The function tries to retract all the coefficients of the equations
      ++ to Q before solving if possible.

  Implementation ==> add
    LEQQ2F : List EQ FQ -> List EQ F
    FQ2F   : FQ -> F
    PQ2P   : PQ -> P
    QIfCan : List P -> Union(List FQ, "failed")
    PQIfCan: P -> Union(FQ, "failed")

    PQ2P p   == map(#1::R, p)$PolynomialFunctions2(Q, R)
    FQ2F f   == PQ2P numer f / PQ2P denom f
    LEQQ2F l == [equation(FQ2F lhs eq, FQ2F rhs eq) for eq in l]

    solveRetract(lp, lv) ==
      (u := QIfCan lp) case "failed" =>
        solve([p::F for p in lp]$List(F), lv)$SSP(R)
      [LEQQ2F l for l in solve(u::List(FQ), lv)$SSP(Q)]

    QIfCan l ==
      ans:List(FQ) := empty()
      for p in l repeat
        (u := PQIfCan p) case "failed" => return "failed"
        ans := concat(u::FQ, ans)
      ans

    PQIfCan p ==
      (u := mainVariable p) case "failed" =>
        (r := retractIfCan(ground p)@Union(Q,"failed")) case Q => r::Q::PQ::FQ
        "failed"
      up := univariate(p, s := u::SY)
      ans:FQ := 0
      while up ~= 0 repeat
        (v := PQIfCan leadingCoefficient up) case "failed" => return "failed"
        ans := ans + monomial(1, s, degree up)$PQ * (v::FQ)
        up  := reductum up
      ans

@
\section{package NLINSOL NonLinearSolvePackage}
<<package NLINSOL NonLinearSolvePackage>>=
)abbrev package NLINSOL NonLinearSolvePackage
++ Author: Manuel Bronstein
++ Date Created: 31 October 1991
++ Date Last Updated: 26 June 1992
++ Description:
++ NonLinearSolvePackage is an interface to \spadtype{SystemSolvePackage}
++ that attempts to retract the coefficients of the equations before
++ solving. The solutions are given in the algebraic closure of R whenever
++ possible.

NonLinearSolvePackage(R:IntegralDomain): Exports == Implementation where
  Z   ==> Integer
  Q   ==> Fraction Z
  SY  ==> Symbol
  P   ==> Polynomial R
  F   ==> Fraction P
  EQ  ==> Equation F
  SSP ==> SystemSolvePackage
  SOL ==> RetractSolvePackage

  Exports ==> with
    solveInField:    (List P, List SY) -> List List EQ
      ++ solveInField(lp,lv) finds the solutions of the list lp of
      ++ rational functions with respect to the list of symbols lv.
    solveInField:     List P       -> List List EQ
      ++ solveInField(lp) finds the solution of the list lp of rational
      ++ functions with respect to all the symbols appearing in lp.
    solve:           (List P, List SY) -> List List EQ
      ++ solve(lp,lv) finds the solutions in the algebraic closure of R
      ++ of the list lp of
      ++ rational functions with respect to the list of symbols lv.
    solve:            List P       -> List List EQ
      ++ solve(lp) finds the solution in the algebraic closure of R
      ++ of the list lp of rational
      ++ functions with respect to all the symbols appearing in lp.

  Implementation ==> add
    solveInField l == solveInField(l, "setUnion"/[variables p for p in l])

    if R has AlgebraicallyClosedField then
      import RationalFunction(R)

      expandSol: List EQ -> List List EQ
      RIfCan   : F -> Union(R, "failed")
      addRoot  : (EQ, List List EQ) -> List List EQ
      allRoots : List P -> List List EQ
      evalSol  : (List EQ, List EQ) -> List EQ

      solve l        == solve(l, "setUnion"/[variables p for p in l])
      solve(lp, lv)  == concat([expandSol sol for sol in solveInField(lp, lv)])
      addRoot(eq, l) == [concat(eq, sol) for sol in l]
      evalSol(ls, l) == [equation(lhs eq, eval(rhs eq, l)) for eq in ls]

-- converts [p1(a1),...,pn(an)] to
-- [[a1=v1,...,an=vn]] where vi ranges over all the zeros of pi
      allRoots l ==
        empty? l => [empty()$List(EQ)]
        z := allRoots rest l
        s := mainVariable(p := first l)::SY::P::F
        concat [addRoot(equation(s, a::P::F), z) for a in zerosOf univariate p]

      expandSol l ==
        lassign := lsubs := empty()$List(EQ)
        luniv := empty()$List(P)
        for eq in l repeat
          if retractIfCan(lhs eq)@Union(SY, "failed") case SY then
            if RIfCan(rhs eq) case R then lassign := concat(eq, lassign)
                                     else lsubs := concat(eq, lsubs)
          else
            if ((u := retractIfCan(lhs eq)@Union(P, "failed")) case P) and
               one?(# variables(u::P)) and ((r := RIfCan rhs eq) case R) then
                 luniv := concat(u::P - r::R::P, luniv)
            else return [l]
        empty? luniv => [l]
        [concat(z, concat(evalSol(lsubs,z), lassign)) for z in allRoots luniv]

      RIfCan f ==
        ((n := retractIfCan(numer f)@Union(R,"failed")) case R) and
          ((d := retractIfCan(denom f)@Union(R,"failed")) case R) => n::R / d::R
        "failed"
    else
      solve l       == solveInField l
      solve(lp, lv) == solveInField(lp, lv)

 -- 'else if' is doubtful with this compiler so all 3 conditions are explicit
    if (not(R is Q)) and (R has RetractableTo Q) then
      solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Q, R)

    if (not(R is Z)) and (not(R has RetractableTo Q)) and
      (R has RetractableTo Z) then
        solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Z, R)

    if (not(R is Z)) and (not(R has RetractableTo Q)) and
      (not(R has RetractableTo Z)) then
        solveInField(lp, lv) == solve([p::F for p in lp]$List(F), lv)$SSP(R)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- Compile order for the differential equation solver:
-- oderf.spad  odealg.spad  nlode.spad  nlinsol.spad  riccati.spad  odeef.spad

<<package RETSOL RetractSolvePackage>>
<<package NLINSOL NonLinearSolvePackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}