\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra newpoly.spad} \author{Marc Moreno Maza} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject Based on the {\bf PseudoRemainderSequence} package, the domain constructor {\bf NewSparseUnivariatePolynomial} extends the constructur {\bf SparseUnivariatePolynomial}. \section{domain NSUP NewSparseUnivariatePolynomial} <<domain NSUP NewSparseUnivariatePolynomial>>= )abbrev domain NSUP NewSparseUnivariatePolynomial ++ Author: Marc Moreno Maza ++ Date Created: 23/07/98 ++ Date Last Updated: 14/12/98 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: A post-facto extension for \axiomType{SUP} in order ++ to speed up operations related to pseudo-division and gcd for ++ both \axiomType{SUP} and, consequently, \axiomType{NSMP}. NewSparseUnivariatePolynomial(R): Exports == Implementation where R:Ring NNI ==> NonNegativeInteger SUPR ==> SparseUnivariatePolynomial R Exports == Join(UnivariatePolynomialCategory(R), CoercibleTo(SUPR),RetractableTo(SUPR)) with fmecg : (%,NNI,R,%) -> % ++ \axiom{fmecg(p1,e,r,p2)} returns \axiom{p1 - r * X**e * p2} ++ where \axiom{X} is \axiom{monomial(1,1)} monicModulo : ($, $) -> $ ++ \axiom{monicModulo(a,b)} returns \axiom{r} such that \axiom{r} is ++ reduced w.r.t. \axiom{b} and \axiom{b} divides \axiom{a -r} ++ where \axiom{b} is monic. lazyResidueClass: ($,$) -> Record(polnum:$, polden:R, power:NNI) ++ \axiom{lazyResidueClass(a,b)} returns \axiom{[r,c,n]} such that ++ \axiom{r} is reduced w.r.t. \axiom{b} and \axiom{b} divides ++ \axiom{c^n * a - r} where \axiom{c} is \axiom{leadingCoefficient(b)} ++ and \axiom{n} is as small as possible with the previous properties. lazyPseudoRemainder: ($,$) -> $ ++ \axiom{lazyPseudoRemainder(a,b)} returns \axiom{r} if \axiom{lazyResidueClass(a,b)} ++ returns \axiom{[r,c,n]}. This lazy pseudo-remainder is computed by ++ means of the \axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation. lazyPseudoDivide: ($,$) -> Record(coef:R, gap:NNI, quotient:$, remainder: $) ++ \axiom{lazyPseudoDivide(a,b)} returns \axiom{[c,g,q,r]} such that ++ \axiom{c^n * a = q*b +r} and \axiom{lazyResidueClass(a,b)} returns \axiom{[r,c,n]} ++ where \axiom{n + g = max(0, degree(b) - degree(a) + 1)}. lazyPseudoQuotient: ($,$) -> $ ++ \axiom{lazyPseudoQuotient(a,b)} returns \axiom{q} if \axiom{lazyPseudoDivide(a,b)} ++ returns \axiom{[c,g,q,r]} if R has IntegralDomain then subResultantsChain: ($, $) -> List $ ++ \axiom{subResultantsChain(a,b)} returns the list of the non-zero ++ sub-resultants of \axiom{a} and \axiom{b} sorted by increasing ++ degree. lastSubResultant: ($, $) -> $ ++ \axiom{lastSubResultant(a,b)} returns \axiom{resultant(a,b)} ++ if \axiom{a} and \axiom{b} has no non-trivial gcd in \axiom{R^(-1) P} ++ otherwise the non-zero sub-resultant with smallest index. extendedSubResultantGcd: ($, $) -> Record(gcd: $, coef1: $, coef2: $) ++ \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[g,ca, cb]} such ++ that \axiom{g} is a gcd of \axiom{a} and \axiom{b} in \axiom{R^(-1) P} ++ and \axiom{g = ca * a + cb * b} halfExtendedSubResultantGcd1: ($, $) -> Record(gcd: $, coef1: $) ++ \axiom{halfExtendedSubResultantGcd1(a,b)} returns \axiom{[g,ca]} such that ++ \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[g,ca, cb]} halfExtendedSubResultantGcd2: ($, $) -> Record(gcd: $, coef2: $) ++ \axiom{halfExtendedSubResultantGcd2(a,b)} returns \axiom{[g,cb]} such that ++ \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[g,ca, cb]} extendedResultant: ($, $) -> Record(resultant: R, coef1: $, coef2: $) ++ \axiom{extendedResultant(a,b)} returns \axiom{[r,ca,cb]} such that ++ \axiom{r} is the resultant of \axiom{a} and \axiom{b} and ++ \axiom{r = ca * a + cb * b} halfExtendedResultant1: ($, $) -> Record(resultant: R, coef1: $) ++ \axiom{halfExtendedResultant1(a,b)} returns \axiom{[r,ca]} such that ++ \axiom{extendedResultant(a,b)} returns \axiom{[r,ca, cb]} halfExtendedResultant2: ($, $) -> Record(resultant: R, coef2: $) ++ \axiom{halfExtendedResultant2(a,b)} returns \axiom{[r,ca]} such that ++ \axiom{extendedResultant(a,b)} returns \axiom{[r,ca, cb]} Implementation == SparseUnivariatePolynomial(R) add Term == Record(k:NonNegativeInteger,c:R) Rep ==> List Term rep(s:$):Rep == s pretend Rep per(l:Rep):$ == l pretend $ coerce (p:$):SUPR == p pretend SUPR coerce (p:SUPR):$ == p pretend $ retractIfCan (p:$) : Union(SUPR,"failed") == (p pretend SUPR)::Union(SUPR,"failed") monicModulo(x,y) == zero? y => error "in monicModulo$NSUP: division by 0" ground? y => error "in monicModulo$NSUP: ground? #2" yy := rep y not one? (yy.first.c) => error "in monicModulo$NSUP: not monic #2" xx := rep x; empty? xx => x e := yy.first.k; y := per(yy.rest) -- while (not empty? xx) repeat repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break xx:= rep fmecg(per rest(xx), u, xx.first.c, y) if empty? xx then break per xx lazyResidueClass(x,y) == zero? y => error "in lazyResidueClass$NSUP: division by 0" ground? y => error "in lazyResidueClass$NSUP: ground? #2" yy := rep y; co := yy.first.c; xx: Rep := rep x empty? xx => [x, co, 0] pow: NNI := 0; e := yy.first.k; y := per(yy.rest); repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break xx:= rep fmecg(co * per rest(xx), u, xx.first.c, y) pow := pow + 1 if empty? xx then break [per xx, co, pow] lazyPseudoRemainder(x,y) == zero? y => error "in lazyPseudoRemainder$NSUP: division by 0" ground? y => error "in lazyPseudoRemainder$NSUP: ground? #2" ground? x => x yy := rep y; co := yy.first.c one? co => monicModulo(x,y) (co = -1) => - monicModulo(-x,-y) xx:= rep x; e := yy.first.k; y := per(yy.rest) repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break xx:= rep fmecg(co * per rest(xx), u, xx.first.c, y) if empty? xx then break per xx lazyPseudoDivide(x,y) == zero? y => error "in lazyPseudoDivide$NSUP: division by 0" ground? y => error "in lazyPseudoDivide$NSUP: ground? #2" yy := rep y; e := yy.first.k; xx: Rep := rep x; co := yy.first.c (empty? xx) or (xx.first.k < e) => [co,0,0,x] pow: NNI := subtractIfCan(xx.first.k,e)::NNI + 1 qq: Rep := []; y := per(yy.rest) repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break qq := cons([u::NNI, xx.first.c]$Term, rep (co * per qq)) xx := rep fmecg(co * per rest(xx), u, xx.first.c, y) pow := subtractIfCan(pow,1)::NNI if empty? xx then break [co, pow, per reverse qq, per xx] lazyPseudoQuotient(x,y) == zero? y => error "in lazyPseudoQuotient$NSUP: division by 0" ground? y => error "in lazyPseudoQuotient$NSUP: ground? #2" yy := rep y; e := yy.first.k; xx: Rep := rep x (empty? xx) or (xx.first.k < e) => 0 qq: Rep := []; co := yy.first.c; y := per(yy.rest) repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break qq := cons([u::NNI, xx.first.c]$Term, rep (co * per qq)) xx := rep fmecg(co * per rest(xx), u, xx.first.c, y) if empty? xx then break per reverse qq if R has IntegralDomain then pack ==> PseudoRemainderSequence(R, %) subResultantGcd(p1,p2) == subResultantGcd(p1,p2)$pack subResultantsChain(p1,p2) == chainSubResultants(p1,p2)$pack lastSubResultant(p1,p2) == lastSubResultant(p1,p2)$pack resultant(p1,p2) == resultant(p1,p2)$pack extendedResultant(p1,p2) == re: Record(coef1: $, coef2: $, resultant: R) := resultantEuclidean(p1,p2)$pack [re.resultant, re.coef1, re.coef2] halfExtendedResultant1(p1:$, p2: $): Record(resultant: R, coef1: $) == re: Record(coef1: $, resultant: R) := semiResultantEuclidean1(p1, p2)$pack [re.resultant, re.coef1] halfExtendedResultant2(p1:$, p2: $): Record(resultant: R, coef2: $) == re: Record(coef2: $, resultant: R) := semiResultantEuclidean2(p1, p2)$pack [re.resultant, re.coef2] extendedSubResultantGcd(p1,p2) == re: Record(coef1: $, coef2: $, gcd: $) := subResultantGcdEuclidean(p1,p2)$pack [re.gcd, re.coef1, re.coef2] halfExtendedSubResultantGcd1(p1:$, p2: $): Record(gcd: $, coef1: $) == re: Record(coef1: $, gcd: $) := semiSubResultantGcdEuclidean1(p1, p2)$pack [re.gcd, re.coef1] halfExtendedSubResultantGcd2(p1:$, p2: $): Record(gcd: $, coef2: $) == re: Record(coef2: $, gcd: $) := semiSubResultantGcdEuclidean2(p1, p2)$pack [re.gcd, re.coef2] pseudoDivide(x,y) == zero? y => error "in pseudoDivide$NSUP: division by 0" ground? y => error "in pseudoDivide$NSUP: ground? #2" yy := rep y; e := yy.first.k xx: Rep := rep x; co := yy.first.c (empty? xx) or (xx.first.k < e) => [co,0,x] pow: NNI := subtractIfCan(xx.first.k,e)::NNI + 1 qq: Rep := []; y := per(yy.rest) repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break qq := cons([u::NNI, xx.first.c]$Term, rep (co * per qq)) xx := rep fmecg(co * per rest(xx), u, xx.first.c, y) pow := subtractIfCan(pow,1)::NNI if empty? xx then break zero? pow => [co, per reverse qq, per xx] default: R := co ** pow q := default * (per reverse qq) x := default * (per xx) [co, q, x] pseudoQuotient(x,y) == zero? y => error "in pseudoDivide$NSUP: division by 0" ground? y => error "in pseudoDivide$NSUP: ground? #2" yy := rep y; e := yy.first.k; xx: Rep := rep x (empty? xx) or (xx.first.k < e) => 0 pow: NNI := subtractIfCan(xx.first.k,e)::NNI + 1 qq: Rep := []; co := yy.first.c; y := per(yy.rest) repeat if (u:=subtractIfCan(xx.first.k,e)) case "failed" then break qq := cons([u::NNI, xx.first.c]$Term, rep (co * per qq)) xx := rep fmecg(co * per rest(xx), u, xx.first.c, y) pow := subtractIfCan(pow,1)::NNI if empty? xx then break zero? pow => per reverse qq (co ** pow) * (per reverse qq) @ \section{package NSUP2 NewSparseUnivariatePolynomialFunctions2} <<package NSUP2 NewSparseUnivariatePolynomialFunctions2>>= )abbrev package NSUP2 NewSparseUnivariatePolynomialFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package lifts a mapping from coefficient rings R to S to ++ a mapping from sparse univariate polynomial over R to ++ a sparse univariate polynomial over S. ++ Note that the mapping is assumed ++ to send zero to zero, since it will only be applied to the non-zero ++ coefficients of the polynomial. NewSparseUnivariatePolynomialFunctions2(R:Ring, S:Ring): with map:(R->S,NewSparseUnivariatePolynomial R) -> NewSparseUnivariatePolynomial S ++ \axiom{map(func, poly)} creates a new polynomial by applying func to ++ every non-zero coefficient of the polynomial poly. == add map(f, p) == map(f, p)$UnivariatePolynomialCategoryFunctions2(R, NewSparseUnivariatePolynomial R, S, NewSparseUnivariatePolynomial S) @ \section{category RPOLCAT RecursivePolynomialCategory} <<category RPOLCAT RecursivePolynomialCategory>>= )abbrev category RPOLCAT RecursivePolynomialCategory ++ Author: Marc Moreno Maza ++ Date Created: 04/22/1994 ++ Date Last Updated: 14/12/1998 ++ Basic Functions: mvar, mdeg, init, head, tail, prem, lazyPrem ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: polynomial, multivariate, ordered variables set ++ References: ++ Description: ++ A category for general multi-variate polynomials with coefficients ++ in a ring, variables in an ordered set, and exponents from an ++ ordered abelian monoid, with a \axiomOp{sup} operation. ++ When not constant, such a polynomial is viewed as a univariate polynomial in its ++ main variable w. r. t. to the total ordering on the elements in the ordered set, so that some ++ operations usually defined for univariate polynomials make sense here. RecursivePolynomialCategory(R:Ring, E:OrderedAbelianMonoidSup, V:OrderedSet): Category == PolynomialCategory(R, E, V) with mvar : $ -> V ++ \axiom{mvar(p)} returns an error if \axiom{p} belongs to \axiom{R}, ++ otherwise returns its main variable w. r. t. to the total ordering ++ on the elements in \axiom{V}. mdeg : $ -> NonNegativeInteger ++ \axiom{mdeg(p)} returns an error if \axiom{p} is \axiom{0}, ++ otherwise, if \axiom{p} belongs to \axiom{R} returns \axiom{0}, ++ otherwise, returns the degree of \axiom{p} in its main variable. init : $ -> $ ++ \axiom{init(p)} returns an error if \axiom{p} belongs to \axiom{R}, ++ otherwise returns its leading coefficient, where \axiom{p} is viewed ++ as a univariate polynomial in its main variable. head : $ -> $ ++ \axiom{head(p)} returns \axiom{p} if \axiom{p} belongs to \axiom{R}, ++ otherwise returns its leading term (monomial in the AXIOM sense), ++ where \axiom{p} is viewed as a univariate polynomial in its main variable. tail : $ -> $ ++ \axiom{tail(p)} returns its reductum, where \axiom{p} is viewed as a univariate ++ polynomial in its main variable. deepestTail : $ -> $ ++ \axiom{deepestTail(p)} returns \axiom{0} if \axiom{p} belongs to \axiom{R}, ++ otherwise returns tail(p), if \axiom{tail(p)} belongs to \axiom{R} ++ or \axiom{mvar(tail(p)) < mvar(p)}, otherwise returns \axiom{deepestTail(tail(p))}. iteratedInitials : $ -> List $ ++ \axiom{iteratedInitials(p)} returns \axiom{[]} if \axiom{p} belongs to \axiom{R}, ++ otherwise returns the list of the iterated initials of \axiom{p}. deepestInitial : $ -> $ ++ \axiom{deepestInitial(p)} returns an error if \axiom{p} belongs to \axiom{R}, ++ otherwise returns the last term of \axiom{iteratedInitials(p)}. leadingCoefficient : ($,V) -> $ ++ \axiom{leadingCoefficient(p,v)} returns the leading coefficient of \axiom{p}, ++ where \axiom{p} is viewed as A univariate polynomial in \axiom{v}. reductum : ($,V) -> $ ++ \axiom{reductum(p,v)} returns the reductum of \axiom{p}, where \axiom{p} is viewed as ++ a univariate polynomial in \axiom{v}. monic? : $ -> Boolean ++ \axiom{monic?(p)} returns false if \axiom{p} belongs to \axiom{R}, ++ otherwise returns true iff \axiom{p} is monic as a univariate polynomial ++ in its main variable. quasiMonic? : $ -> Boolean ++ \axiom{quasiMonic?(p)} returns false if \axiom{p} belongs to \axiom{R}, ++ otherwise returns true iff the initial of \axiom{p} lies in the base ring \axiom{R}. mainMonomial : $ -> $ ++ \axiom{mainMonomial(p)} returns an error if \axiom{p} is \axiom{O}, ++ otherwise, if \axiom{p} belongs to \axiom{R} returns \axiom{1}, ++ otherwise, \axiom{mvar(p)} raised to the power \axiom{mdeg(p)}. leastMonomial : $ -> $ ++ \axiom{leastMonomial(p)} returns an error if \axiom{p} is \axiom{O}, ++ otherwise, if \axiom{p} belongs to \axiom{R} returns \axiom{1}, ++ otherwise, the monomial of \axiom{p} with lowest degree, ++ where \axiom{p} is viewed as a univariate polynomial in its main variable. mainCoefficients : $ -> List $ ++ \axiom{mainCoefficients(p)} returns an error if \axiom{p} is \axiom{O}, ++ otherwise, if \axiom{p} belongs to \axiom{R} returns [p], ++ otherwise returns the list of the coefficients of \axiom{p}, ++ where \axiom{p} is viewed as a univariate polynomial in its main variable. mainMonomials : $ -> List $ ++ \axiom{mainMonomials(p)} returns an error if \axiom{p} is \axiom{O}, ++ otherwise, if \axiom{p} belongs to \axiom{R} returns [1], ++ otherwise returns the list of the monomials of \axiom{p}, ++ where \axiom{p} is viewed as a univariate polynomial in its main variable. RittWuCompare : ($, $) -> Union(Boolean,"failed") ++ \axiom{RittWuCompare(a,b)} returns \axiom{"failed"} if \axiom{a} and \axiom{b} have same rank w.r.t. ++ Ritt and Wu Wen Tsun ordering using the refinement of Lazard, ++ otherwise returns \axiom{infRittWu?(a,b)}. infRittWu? : ($, $) -> Boolean ++ \axiom{infRittWu?(a,b)} returns true if \axiom{a} is less than \axiom{b} ++ w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard. supRittWu? : ($, $) -> Boolean ++ \axiom{supRittWu?(a,b)} returns true if \axiom{a} is greater than \axiom{b} ++ w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard. reduced? : ($,$) -> Boolean ++ \axiom{reduced?(a,b)} returns true iff \axiom{degree(a,mvar(b)) < mdeg(b)}. reduced? : ($,List($)) -> Boolean ++ \axiom{reduced?(q,lp)} returns true iff \axiom{reduced?(q,p)} holds ++ for every \axiom{p} in \axiom{lp}. headReduced? : ($,$) -> Boolean ++ \axiom{headReduced?(a,b)} returns true iff \axiom{degree(head(a),mvar(b)) < mdeg(b)}. headReduced? : ($,List($)) -> Boolean ++ \axiom{headReduced?(q,lp)} returns true iff \axiom{headReduced?(q,p)} holds ++ for every \axiom{p} in \axiom{lp}. initiallyReduced? : ($,$) -> Boolean ++ \axiom{initiallyReduced?(a,b)} returns false iff there exists an iterated initial ++ of \axiom{a} which is not reduced w.r.t \axiom{b}. initiallyReduced? : ($,List($)) -> Boolean ++ \axiom{initiallyReduced?(q,lp)} returns true iff \axiom{initiallyReduced?(q,p)} holds ++ for every \axiom{p} in \axiom{lp}. normalized? : ($,$) -> Boolean ++ \axiom{normalized?(a,b)} returns true iff \axiom{a} and its iterated initials have ++ degree zero w.r.t. the main variable of \axiom{b} normalized? : ($,List($)) -> Boolean ++ \axiom{normalized?(q,lp)} returns true iff \axiom{normalized?(q,p)} holds ++ for every \axiom{p} in \axiom{lp}. prem : ($, $) -> $ ++ \axiom{prem(a,b)} computes the pseudo-remainder of \axiom{a} by \axiom{b}, ++ both viewed as univariate polynomials in the main variable of \axiom{b}. pquo : ($, $) -> $ ++ \axiom{pquo(a,b)} computes the pseudo-quotient of \axiom{a} by \axiom{b}, ++ both viewed as univariate polynomials in the main variable of \axiom{b}. prem : ($, $, V) -> $ ++ \axiom{prem(a,b,v)} computes the pseudo-remainder of \axiom{a} by \axiom{b}, ++ both viewed as univariate polynomials in \axiom{v}. pquo : ($, $, V) -> $ ++ \axiom{pquo(a,b,v)} computes the pseudo-quotient of \axiom{a} by \axiom{b}, ++ both viewed as univariate polynomials in \axiom{v}. lazyPrem : ($, $) -> $ ++ \axiom{lazyPrem(a,b)} returns the polynomial \axiom{r} reduced w.r.t. \axiom{b} ++ and such that \axiom{b} divides \axiom{init(b)^e a - r} where \axiom{e} ++ is the number of steps of this pseudo-division. lazyPquo : ($, $) -> $ ++ \axiom{lazyPquo(a,b)} returns the polynomial \axiom{q} such that ++ \axiom{lazyPseudoDivide(a,b)} returns \axiom{[c,g,q,r]}. lazyPrem : ($, $, V) -> $ ++ \axiom{lazyPrem(a,b,v)} returns the polynomial \axiom{r} ++ reduced w.r.t. \axiom{b} viewed as univariate polynomials in the variable ++ \axiom{v} such that \axiom{b} divides \axiom{init(b)^e a - r} ++ where \axiom{e} is the number of steps of this pseudo-division. lazyPquo : ($, $, V) -> $ ++ \axiom{lazyPquo(a,b,v)} returns the polynomial \axiom{q} such that ++ \axiom{lazyPseudoDivide(a,b,v)} returns \axiom{[c,g,q,r]}. lazyPremWithDefault : ($, $) -> Record (coef : $, gap : NonNegativeInteger, remainder : $) ++ \axiom{lazyPremWithDefault(a,b)} returns \axiom{[c,g,r]} ++ such that \axiom{r = lazyPrem(a,b)} and \axiom{(c**g)*r = prem(a,b)}. lazyPremWithDefault : ($, $, V) -> Record (coef : $, gap : NonNegativeInteger, remainder : $) ++ \axiom{lazyPremWithDefault(a,b,v)} returns \axiom{[c,g,r]} ++ such that \axiom{r = lazyPrem(a,b,v)} and \axiom{(c**g)*r = prem(a,b,v)}. lazyPseudoDivide : ($,$) -> Record(coef:$, gap: NonNegativeInteger,quotient:$, remainder:$) ++ \axiom{lazyPseudoDivide(a,b)} returns \axiom{[c,g,q,r]} ++ such that \axiom{[c,g,r] = lazyPremWithDefault(a,b)} and ++ \axiom{q} is the pseudo-quotient computed in this lazy pseudo-division. lazyPseudoDivide : ($,$,V) -> Record(coef:$, gap:NonNegativeInteger, quotient:$, remainder: $) ++ \axiom{lazyPseudoDivide(a,b,v)} returns \axiom{[c,g,q,r]} such that ++ \axiom{r = lazyPrem(a,b,v)}, \axiom{(c**g)*r = prem(a,b,v)} and \axiom{q} ++ is the pseudo-quotient computed in this lazy pseudo-division. pseudoDivide : ($, $) -> Record (quotient : $, remainder : $) ++ \axiom{pseudoDivide(a,b)} computes \axiom{[pquo(a,b),prem(a,b)]}, both ++ polynomials viewed as univariate polynomials in the main variable of \axiom{b}, ++ if \axiom{b} is not a constant polynomial. monicModulo : ($, $) -> $ ++ \axiom{monicModulo(a,b)} computes \axiom{a mod b}, if \axiom{b} is ++ monic as univariate polynomial in its main variable. lazyResidueClass : ($,$) -> Record(polnum:$, polden:$, power:NonNegativeInteger) ++ \axiom{lazyResidueClass(a,b)} returns \axiom{[p,q,n]} where \axiom{p / q**n} ++ represents the residue class of \axiom{a} modulo \axiom{b} ++ and \axiom{p} is reduced w.r.t. \axiom{b} and \axiom{q} is \axiom{init(b)}. headReduce: ($, $) -> $ ++ \axiom{headReduce(a,b)} returns a polynomial \axiom{r} such that ++ \axiom{headReduced?(r,b)} holds and there exists an integer \axiom{e} ++ such that \axiom{init(b)^e a - r} is zero modulo \axiom{b}. initiallyReduce: ($, $) -> $ ++ \axiom{initiallyReduce(a,b)} returns a polynomial \axiom{r} such that ++ \axiom{initiallyReduced?(r,b)} holds and there exists an integer \axiom{e} ++ such that \axiom{init(b)^e a - r} is zero modulo \axiom{b}. if (V has ConvertibleTo(Symbol)) then CoercibleTo(Polynomial R) ConvertibleTo(Polynomial R) if R has Algebra Fraction Integer then retractIfCan : Polynomial Fraction Integer -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial Fraction Integer -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. convert : Polynomial Fraction Integer -> $ ++ \axiom{convert(p)} returns the same as \axiom{retract(p)}. retractIfCan : Polynomial Integer -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial Integer -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. convert : Polynomial Integer -> $ ++ \axiom{convert(p)} returns the same as \axiom{retract(p)} if not (R has QuotientFieldCategory(Integer)) then retractIfCan : Polynomial R -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial R -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. if (R has Algebra Integer) and not(R has Algebra Fraction Integer) then retractIfCan : Polynomial Integer -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial Integer -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. convert : Polynomial Integer -> $ ++ \axiom{convert(p)} returns the same as \axiom{retract(p)}. if not (R has IntegerNumberSystem) then retractIfCan : Polynomial R -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial R -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. if not(R has Algebra Integer) and not(R has Algebra Fraction Integer) then retractIfCan : Polynomial R -> Union($,"failed") ++ \axiom{retractIfCan(p)} returns \axiom{p} as an element of the current domain ++ if all its variables belong to \axiom{V}. retract : Polynomial R -> $ ++ \axiom{retract(p)} returns \axiom{p} as an element of the current domain ++ if \axiom{retractIfCan(p)} does not return "failed", otherwise an error ++ is produced. convert : Polynomial R -> $ ++ \axiom{convert(p)} returns \axiom{p} as an element of the current domain if all ++ its variables belong to \axiom{V}, otherwise an error is produced. if R has RetractableTo(Integer) then ConvertibleTo(String) if R has IntegralDomain then primPartElseUnitCanonical : $ -> $ ++ \axiom{primPartElseUnitCanonical(p)} returns \axiom{primitivePart(p)} ++ if \axiom{R} is a gcd-domain, otherwise \axiom{unitCanonical(p)}. primPartElseUnitCanonical! : $ -> $ ++ \axiom{primPartElseUnitCanonical!(p)} replaces \axiom{p} ++ by \axiom{primPartElseUnitCanonical(p)}. exactQuotient : ($,R) -> $ ++ \axiom{exactQuotient(p,r)} computes the exact quotient of \axiom{p} ++ by \axiom{r}, which is assumed to be a divisor of \axiom{p}. ++ No error is returned if this exact quotient fails! exactQuotient! : ($,R) -> $ ++ \axiom{exactQuotient!(p,r)} replaces \axiom{p} by \axiom{exactQuotient(p,r)}. exactQuotient : ($,$) -> $ ++ \axiom{exactQuotient(a,b)} computes the exact quotient of \axiom{a} ++ by \axiom{b}, which is assumed to be a divisor of \axiom{a}. ++ No error is returned if this exact quotient fails! exactQuotient! : ($,$) -> $ ++ \axiom{exactQuotient!(a,b)} replaces \axiom{a} by \axiom{exactQuotient(a,b)} subResultantGcd : ($, $) -> $ ++ \axiom{subResultantGcd(a,b)} computes a gcd of \axiom{a} and \axiom{b} ++ where \axiom{a} and \axiom{b} are assumed to have the same main variable \axiom{v} ++ and are viewed as univariate polynomials in \axiom{v} with coefficients ++ in the fraction field of the polynomial ring generated by their other variables ++ over \axiom{R}. extendedSubResultantGcd : ($, $) -> Record (gcd : $, coef1 : $, coef2 : $) ++ \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[ca,cb,r]} ++ such that \axiom{r} is \axiom{subResultantGcd(a,b)} and we have ++ \axiom{ca * a + cb * cb = r} . halfExtendedSubResultantGcd1: ($, $) -> Record (gcd : $, coef1 : $) ++ \axiom{halfExtendedSubResultantGcd1(a,b)} returns \axiom{[g,ca]} ++ if \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[g,ca,cb]} ++ otherwise produces an error. halfExtendedSubResultantGcd2: ($, $) -> Record (gcd : $, coef2 : $) ++ \axiom{halfExtendedSubResultantGcd2(a,b)} returns \axiom{[g,cb]} ++ if \axiom{extendedSubResultantGcd(a,b)} returns \axiom{[g,ca,cb]} ++ otherwise produces an error. resultant : ($, $) -> $ ++ \axiom{resultant(a,b)} computes the resultant of \axiom{a} and \axiom{b} ++ where \axiom{a} and \axiom{b} are assumed to have the same main variable \axiom{v} ++ and are viewed as univariate polynomials in \axiom{v}. subResultantChain : ($, $) -> List $ ++ \axiom{subResultantChain(a,b)}, where \axiom{a} and \axiom{b} are not ++ contant polynomials with the same ++ main variable, returns the subresultant chain of \axiom{a} and \axiom{b}. lastSubResultant: ($, $) -> $ ++ \axiom{lastSubResultant(a,b)} returns the last non-zero subresultant ++ of \axiom{a} and \axiom{b} where \axiom{a} and \axiom{b} are assumed to have ++ the same main variable \axiom{v} and are viewed as univariate polynomials in \axiom{v}. LazardQuotient: ($, $, NonNegativeInteger) -> $ ++ \axiom{LazardQuotient(a,b,n)} returns \axiom{a**n exquo b**(n-1)} ++ assuming that this quotient does not fail. LazardQuotient2: ($, $, $, NonNegativeInteger) -> $ ++ \axiom{LazardQuotient2(p,a,b,n)} returns ++ \axiom{(a**(n-1) * p) exquo b**(n-1)} ++ assuming that this quotient does not fail. next_subResultant2: ($, $, $, $) -> $ ++ \axiom{nextsubResultant2(p,q,z,s)} is the multivariate version ++ of the operation \axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from ++ the \axiomType{PseudoRemainderSequence} constructor. if R has GcdDomain then gcd : (R,$) -> R ++ \axiom{gcd(r,p)} returns the gcd of \axiom{r} and the content of \axiom{p}. primitivePart! : $ -> $ ++ \axiom{primitivePart!(p)} replaces \axiom{p} by its primitive part. mainContent : $ -> $ ++ \axiom{mainContent(p)} returns the content of \axiom{p} viewed as a univariate ++ polynomial in its main variable and with coefficients in the ++ polynomial ring generated by its other variables over \axiom{R}. mainPrimitivePart : $ -> $ ++ \axiom{mainPrimitivePart(p)} returns the primitive part of \axiom{p} viewed as a ++ univariate polynomial in its main variable and with coefficients ++ in the polynomial ring generated by its other variables over \axiom{R}. mainSquareFreePart : $ -> $ ++ \axiom{mainSquareFreePart(p)} returns the square free part of \axiom{p} viewed as a ++ univariate polynomial in its main variable and with coefficients ++ in the polynomial ring generated by its other variables over \axiom{R}. add O ==> OutputForm NNI ==> NonNegativeInteger INT ==> Integer exactQuo : (R,R) -> R coerce(p:$):O == ground? (p) => (ground(p))::O if one?((ip := init(p))) then if zero?((tp := tail(p))) then if one?((dp := mdeg(p))) then return((mvar(p))::O) else return(((mvar(p))::O **$O (dp::O))) else if one?((dp := mdeg(p))) then return((mvar(p))::O +$O (tp::O)) else return(((mvar(p))::O **$O (dp::O)) +$O (tp::O)) else if zero?((tp := tail(p))) then if one?((dp := mdeg(p))) then return((ip::O) *$O (mvar(p))::O) else return((ip::O) *$O ((mvar(p))::O **$O (dp::O))) else if one?(mdeg(p)) then return(((ip::O) *$O (mvar(p))::O) +$O (tp::O)) ((ip)::O *$O ((mvar(p))::O **$O ((mdeg(p)::O))) +$O (tail(p)::O)) mvar p == ground?(p) => error"Error in mvar from RPOLCAT : #1 is constant." mainVariable(p)::V mdeg p == ground?(p) => 0$NNI degree(p,mainVariable(p)::V) init p == ground?(p) => error"Error in mvar from RPOLCAT : #1 is constant." v := mainVariable(p)::V coefficient(p,v,degree(p,v)) leadingCoefficient (p,v) == zero? (d := degree(p,v)) => p coefficient(p,v,d) head p == ground? p => p v := mainVariable(p)::V d := degree(p,v) monomial(coefficient(p,v,d),v,d) reductum(p,v) == zero? (d := degree(p,v)) => 0$$ p - monomial(coefficient(p,v,d),v,d) tail p == ground? p => 0$$ p - head(p) deepestTail p == ground? p => 0$$ ground? tail(p) => tail(p) mvar(p) > mvar(tail(p)) => tail(p) deepestTail(tail(p)) iteratedInitials p == ground? p => [] p := init(p) cons(p,iteratedInitials(p)) localDeepestInitial (p : $) : $ == ground? p => p localDeepestInitial init p deepestInitial p == ground? p => error"Error in deepestInitial from RPOLCAT : #1 is constant." localDeepestInitial init p monic? p == ground? p => false (recip(init(p))$$ case $)@Boolean quasiMonic? p == ground? p => false ground?(init(p)) mainMonomial p == zero? p => error"Error in mainMonomial from RPOLCAT : #1 is zero" ground? p => 1$$ v := mainVariable(p)::V monomial(1$$,v,degree(p,v)) leastMonomial p == zero? p => error"Error in leastMonomial from RPOLCAT : #1 is zero" ground? p => 1$$ v := mainVariable(p)::V monomial(1$$,v,minimumDegree(p,v)) mainCoefficients p == zero? p => error"Error in mainCoefficients from RPOLCAT : #1 is zero" ground? p => [p] v := mainVariable(p)::V coefficients(univariate(p,v)@SparseUnivariatePolynomial($)) mainMonomials p == zero? p => error"Error in mainMonomials from RPOLCAT : #1 is zero" ground? p => [1$$] v := mainVariable(p)::V lm := monomials(univariate(p,v)@SparseUnivariatePolynomial($)) [monomial(1$$,v,degree(m)) for m in lm] RittWuCompare (a,b) == (ground? b and ground? a) => "failed"::Union(Boolean,"failed") ground? b => false::Union(Boolean,"failed") ground? a => true::Union(Boolean,"failed") mvar(a) < mvar(b) => true::Union(Boolean,"failed") mvar(a) > mvar(b) => false::Union(Boolean,"failed") mdeg(a) < mdeg(b) => true::Union(Boolean,"failed") mdeg(a) > mdeg(b) => false::Union(Boolean,"failed") lc := RittWuCompare(init(a),init(b)) lc case Boolean => lc RittWuCompare(tail(a),tail(b)) infRittWu? (a,b) == lc : Union(Boolean,"failed") := RittWuCompare(a,b) lc case Boolean => lc::Boolean false supRittWu? (a,b) == infRittWu? (b,a) prem (a:$, b:$) : $ == cP := lazyPremWithDefault (a,b) ((cP.coef) ** (cP.gap)) * cP.remainder pquo (a:$, b:$) : $ == cPS := lazyPseudoDivide (a,b) c := (cPS.coef) ** (cPS.gap) c * cPS.quotient prem (a:$, b:$, v:V) : $ == cP := lazyPremWithDefault (a,b,v) ((cP.coef) ** (cP.gap)) * cP.remainder pquo (a:$, b:$, v:V) : $ == cPS := lazyPseudoDivide (a,b,v) c := (cPS.coef) ** (cPS.gap) c * cPS.quotient lazyPrem (a:$, b:$) : $ == (not ground?(b)) and (monic?(b)) => monicModulo(a,b) (lazyPremWithDefault (a,b)).remainder lazyPquo (a:$, b:$) : $ == (lazyPseudoDivide (a,b)).quotient lazyPrem (a:$, b:$, v:V) : $ == zero? b => error"Error in lazyPrem : ($,$,V) -> $ from RPOLCAT : #2 is zero" ground?(b) => 0$$ (v = mvar(b)) => lazyPrem(a,b) dbv : NNI := degree(b,v) zero? dbv => 0$$ dav : NNI := degree(a,v) zero? dav => a test : INT := dav::INT - dbv lcbv : $ := leadingCoefficient(b,v) while not zero?(a) and not negative?(test) repeat lcav := leadingCoefficient(a,v) term := monomial(lcav,v,test::NNI) a := lcbv * a - term * b test := degree(a,v)::INT - dbv a lazyPquo (a:$, b:$, v:V) : $ == (lazyPseudoDivide (a,b,v)).quotient headReduce (a:$,b:$) == ground? b => error"Error in headReduce : ($,$) -> Boolean from TSETCAT : #2 is constant" ground? a => a mvar(a) = mvar(b) => lazyPrem(a,b) while not reduced?((ha := head a),b) repeat lrc := lazyResidueClass(ha,b) if zero? tail(a) then a := lrc.polnum else a := lrc.polnum + (lrc.polden)**(lrc.power) * tail(a) a initiallyReduce(a:$,b:$) == ground? b => error"Error in initiallyReduce : ($,$) -> Boolean from TSETCAT : #2 is constant" ground? a => a v := mvar(b) mvar(a) = v => lazyPrem(a,b) ia := a ma := 1$$ ta := 0$$ while (not ground?(ia)) and (mvar(ia) >= mvar(b)) repeat if (mvar(ia) = mvar(b)) and (mdeg(ia) >= mdeg(b)) then iamodb := lazyResidueClass(ia,b) ia := iamodb.polnum if not zero? ta then ta := (iamodb.polden)**(iamodb.power) * ta if zero? ia then ia := ta ma := 1$$ ta := 0$$ else if not ground?(ia) then ta := tail(ia) * ma + ta ma := mainMonomial(ia) * ma ia := init(ia) ia * ma + ta lazyPremWithDefault (a,b) == ground?(b) => error"Error in lazyPremWithDefault from RPOLCAT : #2 is constant" ground?(a) => [1$$,0$NNI,a] xa := mvar a xb := mvar b xa < xb => [1$$,0$NNI,a] lcb : $ := init b db : NNI := mdeg b test : INT := degree(a,xb)::INT - db delta : INT := max(test + 1$INT, 0$INT) if xa = xb then b := tail b while not zero?(a) and not negative?(test) repeat term := monomial(init(a),xb,test::NNI) a := lcb * tail(a) - term * b delta := delta - 1$INT test := degree(a,xb)::INT - db else while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,xb),xb,test::NNI) a := lcb * a - term * b delta := delta - 1$INT test := degree(a,xb)::INT - db [lcb, (delta::NNI), a] lazyPremWithDefault (a,b,v) == zero? b => error"Error in lazyPremWithDefault : ($,$,V) -> $ from RPOLCAT : #2 is zero" ground?(b) => [b,1$NNI,0$$] (v = mvar(b)) => lazyPremWithDefault(a,b) dbv : NNI := degree(b,v) zero? dbv => [b,1$NNI,0$$] dav : NNI := degree(a,v) zero? dav => [1$$,0$NNI,a] test : INT := dav::INT - dbv delta : INT := max(test + 1$INT, 0$INT) lcbv : $ := leadingCoefficient(b,v) while not zero?(a) and not negative?(test) repeat lcav := leadingCoefficient(a,v) term := monomial(lcav,v,test::NNI) a := lcbv * a - term * b delta := delta - 1$INT test := degree(a,v)::INT - dbv [lcbv, (delta::NNI), a] pseudoDivide (a,b) == cPS := lazyPseudoDivide (a,b) c := (cPS.coef) ** (cPS.gap) [c * cPS.quotient, c * cPS.remainder] lazyPseudoDivide (a,b) == ground?(b) => error"Error in lazyPseudoDivide from RPOLCAT : #2 is constant" ground?(a) => [1$$,0$NNI,0$$,a] xa := mvar a xb := mvar b xa < xb => [1$$,0$NNI,0$$, a] lcb : $ := init b db : NNI := mdeg b q := 0$$ test : INT := degree(a,xb)::INT - db delta : INT := max(test + 1$INT, 0$INT) if xa = xb then b := tail b while not zero?(a) and not negative?(test) repeat term := monomial(init(a),xb,test::NNI) a := lcb * tail(a) - term * b q := lcb * q + term delta := delta - 1$INT test := degree(a,xb)::INT - db else while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,xb),xb,test::NNI) a := lcb * a - term * b q := lcb * q + term delta := delta - 1$INT test := degree(a,xb)::INT - db [lcb, (delta::NNI), q, a] lazyPseudoDivide (a,b,v) == zero? b => error"Error in lazyPseudoDivide : ($,$,V) -> $ from RPOLCAT : #2 is zero" ground?(b) => [b,1$NNI,a,0$$] (v = mvar(b)) => lazyPseudoDivide(a,b) dbv : NNI := degree(b,v) zero? dbv => [b,1$NNI,a,0$$] dav : NNI := degree(a,v) zero? dav => [1$$,0$NNI,0$$, a] test : INT := dav::INT - dbv delta : INT := max(test + 1$INT, 0$INT) lcbv : $ := leadingCoefficient(b,v) q := 0$$ while not zero?(a) and not negative?(test) repeat lcav := leadingCoefficient(a,v) term := monomial(lcav,v,test::NNI) a := lcbv * a - term * b q := lcbv * q + term delta := delta - 1$INT test := degree(a,v)::INT - dbv [lcbv, (delta::NNI), q, a] monicModulo (a,b) == ground?(b) => error"Error in monicModulo from RPOLCAT : #2 is constant" rec : Union($,"failed") rec := recip((ib := init(b)))$$ (rec case "failed")@Boolean => error"Error in monicModulo from RPOLCAT : #2 is not monic" ground? a => a ib * ((lazyPremWithDefault ((rec::$) * a,(rec::$) * b)).remainder) lazyResidueClass(a,b) == zero? b => [a,1$$,0$NNI] ground? b => [0$$,1$$,0$NNI] ground? a => [a,1$$,0$NNI] xa := mvar a xb := mvar b xa < xb => [a,1$$,0$NNI] monic?(b) => [monicModulo(a,b),1$$,0$NNI] lcb : $ := init b db : NNI := mdeg b test : INT := degree(a,xb)::INT - db pow : NNI := 0 if xa = xb then b := tail b while not zero?(a) and not negative?(test) repeat term := monomial(init(a),xb,test::NNI) a := lcb * tail(a) - term * b pow := pow + 1$NNI test := degree(a,xb)::INT - db else while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,xb),xb,test::NNI) a := lcb * a - term * b pow := pow + 1$NNI test := degree(a,xb)::INT - db [a,lcb,pow] reduced? (a:$,b:$) : Boolean == degree(a,mvar(b)) < mdeg(b) reduced? (p:$, lq : List($)) : Boolean == ground? p => true while (not empty? lq) and (reduced?(p, first lq)) repeat lq := rest lq empty? lq headReduced? (a:$,b:$) : Boolean == reduced?(head(a),b) headReduced? (p:$, lq : List($)) : Boolean == reduced?(head(p),lq) initiallyReduced? (a:$,b:$) : Boolean == ground? b => error"Error in initiallyReduced? : ($,$) -> Bool. from RPOLCAT : #2 is constant" ground?(a) => true mvar(a) < mvar(b) => true (mvar(a) = mvar(b)) => reduced?(a,b) initiallyReduced?(init(a),b) initiallyReduced? (p:$, lq : List($)) : Boolean == ground? p => true while (not empty? lq) and (initiallyReduced?(p, first lq)) repeat lq := rest lq empty? lq normalized?(a:$,b:$) : Boolean == ground? b => error"Error in normalized? : ($,$) -> Boolean from TSETCAT : #2 is constant" ground? a => true mvar(a) < mvar(b) => true (mvar(a) = mvar(b)) => false normalized?(init(a),b) normalized? (p:$, lq : List($)) : Boolean == while (not empty? lq) and (normalized?(p, first lq)) repeat lq := rest lq empty? lq if R has IntegralDomain then exactQuo(r:R,s:R):R == R has EuclideanDomain => r quo$R s (r exquo$R s)::R exactQuotient (p:$,r:R) == (p exquo$$ r)::$ exactQuotient (a:$,b:$) == ground? b => exactQuotient(a,ground(b)) (a exquo$$ b)::$ exactQuotient! (a:$,b:$) == ground? b => exactQuotient!(a,ground(b)) a := (a exquo$$ b)::$ if (R has GcdDomain) and not(R has Field) then primPartElseUnitCanonical p == primitivePart p primitivePart! p == zero? p => p if one?(cp := content(p)) then p := unitCanonical p else p := unitCanonical exactQuotient!(p,cp) p primPartElseUnitCanonical! p == primitivePart! p else primPartElseUnitCanonical p == unitCanonical p primPartElseUnitCanonical! p == p := unitCanonical p if R has GcdDomain then gcd(r:R,p:$):R == one? r => r zero? p => r ground? p => gcd(r,ground(p))$R gcd(gcd(r,init(p)),tail(p)) mainContent p == zero? p => p "gcd"/mainCoefficients(p) mainPrimitivePart p == zero? p => p (unitNormal((p exquo$$ mainContent(p))::$)).canonical mainSquareFreePart p == ground? p => p v := mainVariable(p)::V sfp : SparseUnivariatePolynomial($) sfp := squareFreePart(univariate(p,v)@SparseUnivariatePolynomial($)) multivariate(sfp,v) if (V has ConvertibleTo(Symbol)) then PR ==> Polynomial R PQ ==> Polynomial Fraction Integer PZ ==> Polynomial Integer IES ==> IndexedExponents(Symbol) Q ==> Fraction Integer Z ==> Integer convert(p:$) : PR == ground? p => (ground(p)$$)::PR v : V := mvar(p) d : NNI := mdeg(p) convert(init(p))@PR *$PR ((convert(v)@Symbol)::PR)**d +$PR convert(tail(p))@PR coerce(p:$) : PR == convert(p)@PR localRetract : PR -> $ localRetractPQ : PQ -> $ localRetractPZ : PZ -> $ localRetractIfCan : PR -> Union($,"failed") localRetractIfCanPQ : PQ -> Union($,"failed") localRetractIfCanPZ : PZ -> Union($,"failed") if V has Finite then sizeV : NNI := size()$V lv : List Symbol lv := [convert(index(i::PositiveInteger)$V)@Symbol for i in 1..sizeV] localRetract(p : PR) : $ == ground? p => (ground(p)$PR)::$ mvp : Symbol := (mainVariable(p)$PR)::Symbol d : NNI imvp : PositiveInteger := (position(mvp,lv)$(List Symbol))::PositiveInteger vimvp : V := index(imvp)$V xvimvp,c : $ newp := 0$$ while (not zero? (d := degree(p,mvp))) repeat c := localRetract(coefficient(p,mvp,d)$PR) xvimvp := monomial(c,vimvp,d)$$ newp := newp +$$ xvimvp p := p -$PR monomial(coefficient(p,mvp,d)$PR,mvp,d)$PR newp +$$ localRetract(p) if R has Algebra Fraction Integer then localRetractPQ(pq:PQ):$ == ground? pq => ((ground(pq)$PQ)::R)::$ mvp : Symbol := (mainVariable(pq)$PQ)::Symbol d : NNI imvp : PositiveInteger := (position(mvp,lv)$(List Symbol))::PositiveInteger vimvp : V := index(imvp)$V xvimvp,c : $ newp := 0$$ while (not zero? (d := degree(pq,mvp))) repeat c := localRetractPQ(coefficient(pq,mvp,d)$PQ) xvimvp := monomial(c,vimvp,d)$$ newp := newp +$$ xvimvp pq := pq -$PQ monomial(coefficient(pq,mvp,d)$PQ,mvp,d)$PQ newp +$$ localRetractPQ(pq) if R has Algebra Integer then localRetractPZ(pz:PZ):$ == ground? pz => ((ground(pz)$PZ)::R)::$ mvp : Symbol := (mainVariable(pz)$PZ)::Symbol d : NNI imvp : PositiveInteger := (position(mvp,lv)$(List Symbol))::PositiveInteger vimvp : V := index(imvp)$V xvimvp,c : $ newp := 0$$ while (not zero? (d := degree(pz,mvp))) repeat c := localRetractPZ(coefficient(pz,mvp,d)$PZ) xvimvp := monomial(c,vimvp,d)$$ newp := newp +$$ xvimvp pz := pz -$PZ monomial(coefficient(pz,mvp,d)$PZ,mvp,d)$PZ newp +$$ localRetractPZ(pz) retractable?(p:PR):Boolean == lvp := variables(p)$PR while not empty? lvp and member?(first lvp,lv) repeat lvp := rest lvp empty? lvp retractablePQ?(p:PQ):Boolean == lvp := variables(p)$PQ while not empty? lvp and member?(first lvp,lv) repeat lvp := rest lvp empty? lvp retractablePZ?(p:PZ):Boolean == lvp := variables(p)$PZ while not empty? lvp and member?(first lvp,lv) repeat lvp := rest lvp empty? lvp localRetractIfCan(p : PR): Union($,"failed") == not retractable?(p) => "failed"::Union($,"failed") localRetract(p)::Union($,"failed") localRetractIfCanPQ(p : PQ): Union($,"failed") == not retractablePQ?(p) => "failed"::Union($,"failed") localRetractPQ(p)::Union($,"failed") localRetractIfCanPZ(p : PZ): Union($,"failed") == not retractablePZ?(p) => "failed"::Union($,"failed") localRetractPZ(p)::Union($,"failed") if R has Algebra Fraction Integer then mpc2Z := MPolyCatFunctions2(Symbol,IES,IES,Z,R,PZ,PR) mpc2Q := MPolyCatFunctions2(Symbol,IES,IES,Q,R,PQ,PR) retract(pz:PZ) == rif : Union($,"failed") := retractIfCan(pz)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pz:PZ) == retract(pz)@$ retract(pq:PQ) == rif : Union($,"failed") := retractIfCan(pq)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pq:PQ) == retract(pq)@$ if not (R has QuotientFieldCategory(Integer)) then -- the only operation to implement is retractIfCan : PR -> Union($,"failed") -- when V does not have Finite if V has Finite then retractIfCan(pr:PR) == localRetractIfCan(pr)@Union($,"failed") retractIfCan(pq:PQ) == localRetractIfCanPQ(pq)@Union($,"failed") else retractIfCan(pq:PQ) == pr : PR := map(#1::R,pq)$mpc2Q retractIfCan(pr)@Union($,"failed") retractIfCan(pz:PZ) == pr : PR := map(#1::R,pz)$mpc2Z retractIfCan(pr)@Union($,"failed") retract(pr:PR) == rif : Union($,"failed") := retractIfCan(pr)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pr:PR) == retract(pr)@$ else -- the only operation to implement is retractIfCan : PQ -> Union($,"failed") -- when V does not have Finite mpc2ZQ := MPolyCatFunctions2(Symbol,IES,IES,Z,Q,PZ,PQ) mpc2RQ := MPolyCatFunctions2(Symbol,IES,IES,R,Q,PR,PQ) ZToQ(z:Z):Q == coerce(z)@Q RToQ(r:R):Q == retract(r)@Q PZToPQ (pz:PZ):PQ == map(ZToQ,pz)$mpc2ZQ PRToPQ (pr:PR):PQ == map(RToQ,pr)$mpc2RQ retractIfCan(pz:PZ) == pq : PQ := PZToPQ(pz) retractIfCan(pq)@Union($,"failed") if V has Finite then retractIfCan(pq:PQ) == localRetractIfCanPQ(pq)@Union($,"failed") convert(pr:PR) == lrif : Union($,"failed") := localRetractIfCan(pr)@Union($,"failed") (lrif case "failed") => error"failed in convert: PR->$ from RPOLCAT" lrif::$ else convert(pr:PR) == pq : PQ := PRToPQ(pr) retract(pq)@$ if (R has Algebra Integer) and not(R has Algebra Fraction Integer) then mpc2Z := MPolyCatFunctions2(Symbol,IES,IES,Z,R,PZ,PR) retract(pz:PZ) == rif : Union($,"failed") := retractIfCan(pz)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pz:PZ) == retract(pz)@$ if not (R has IntegerNumberSystem) then -- the only operation to implement is retractIfCan : PR -> Union($,"failed") -- when V does not have Finite if V has Finite then retractIfCan(pr:PR) == localRetractIfCan(pr)@Union($,"failed") retractIfCan(pz:PZ) == localRetractIfCanPZ(pz)@Union($,"failed") else retractIfCan(pz:PZ) == pr : PR := map(#1::R,pz)$mpc2Z retractIfCan(pr)@Union($,"failed") retract(pr:PR) == rif : Union($,"failed") := retractIfCan(pr)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pr:PR) == retract(pr)@$ else -- the only operation to implement is retractIfCan : PZ -> Union($,"failed") -- when V does not have Finite mpc2RZ := MPolyCatFunctions2(Symbol,IES,IES,R,Z,PR,PZ) RToZ(r:R):Z == retract(r)@Z PRToPZ (pr:PR):PZ == map(RToZ,pr)$mpc2RZ if V has Finite then convert(pr:PR) == lrif : Union($,"failed") := localRetractIfCan(pr)@Union($,"failed") (lrif case "failed") => error"failed in convert: PR->$ from RPOLCAT" lrif::$ retractIfCan(pz:PZ) == localRetractIfCanPZ(pz)@Union($,"failed") else convert(pr:PR) == pz : PZ := PRToPZ(pr) retract(pz)@$ if not(R has Algebra Integer) and not(R has Algebra Fraction Integer) then -- the only operation to implement is retractIfCan : PR -> Union($,"failed") if V has Finite then retractIfCan(pr:PR) == localRetractIfCan(pr)@Union($,"failed") retract(pr:PR) == rif : Union($,"failed") := retractIfCan(pr)@Union($,"failed") (rif case "failed") => error"failed in retract: POLY Z -> $ from RPOLCAT" rif::$ convert(pr:PR) == retract(pr)@$ if (R has RetractableTo(INT)) then convert(pol:$):String == ground?(pol) => convert(retract(ground(pol))@INT)@String ipol : $ := init(pol) vpol : V := mvar(pol) dpol : NNI := mdeg(pol) tpol: $ := tail(pol) sipol,svpol,sdpol,stpol : String if one? ipol then sipol := empty()$String else if one?(-ipol) then sipol := "-" else sipol := convert(ipol)@String if not monomial?(ipol) then sipol := concat(["(",sipol,")*"])$String else sipol := concat(sipol,"*")$String svpol := string(convert(vpol)@Symbol) if one? dpol then sdpol := empty()$String else sdpol := concat("**",convert(convert(dpol)@INT)@String )$String if zero? tpol then stpol := empty()$String else if ground?(tpol) then n := retract(ground(tpol))@INT if n > 0 then stpol := concat(" +",convert(n)@String)$String else stpol := convert(n)@String else stpol := convert(tpol)@String if not member?((stpol.1)::String,["+","-"])$(List String) then stpol := concat(" + ",stpol)$String concat([sipol,svpol,sdpol,stpol])$String @ Based on the {\bf PseudoRemainderSequence} package, the domain constructor {\bf NewSparseMulitvariatePolynomial} extends the constructor {\bf SparseMultivariatePolynomial}. It also provides some additional operations related to polynomial system solving by means of triangular sets. \section{domain NSMP NewSparseMultivariatePolynomial} <<domain NSMP NewSparseMultivariatePolynomial>>= )abbrev domain NSMP NewSparseMultivariatePolynomial ++ Author: Marc Moreno Maza ++ Date Created: 22/04/94 ++ Date Last Updated: 14/12/1998 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: A post-facto extension for \axiomType{SMP} in order ++ to speed up operations related to pseudo-division and gcd. ++ This domain is based on the \axiomType{NSUP} constructor which is ++ itself a post-facto extension of the \axiomType{SUP} constructor. ++ Version: 2 NewSparseMultivariatePolynomial(R,VarSet) : Exports == Implementation where R:Ring VarSet:OrderedSet N ==> NonNegativeInteger Z ==> Integer SUP ==> NewSparseUnivariatePolynomial SMPR ==> SparseMultivariatePolynomial(R, VarSet) SUP2 ==> NewSparseUnivariatePolynomialFunctions2($,$) Exports == Join(RecursivePolynomialCategory(R,IndexedExponents VarSet, VarSet), CoercibleTo(SMPR),RetractableTo(SMPR)) Implementation == SparseMultivariatePolynomial(R, VarSet) add D := NewSparseUnivariatePolynomial($) VPoly:= Record(v:VarSet,ts:D) Rep:= Union(R,VPoly) --local function PSimp: (D,VarSet) -> % PSimp(up,mv) == if degree(up) = 0 then leadingCoefficient(up) else [mv,up]$VPoly coerce (p:$):SMPR == p pretend SMPR coerce (p:SMPR):$ == p pretend $ retractIfCan (p:$) : Union(SMPR,"failed") == (p pretend SMPR)::Union(SMPR,"failed") mvar p == p case R => error" Error in mvar from NSMP : #1 has no variables." p.v mdeg p == p case R => 0$N degree(p.ts)$D init p == p case R => error" Error in init from NSMP : #1 has no variables." leadingCoefficient(p.ts)$D head p == p case R => p ([p.v,leadingMonomial(p.ts)$D]$VPoly)::Rep tail p == p case R => 0$$ red := reductum(p.ts)$D ground?(red)$D => (ground(red)$D)::Rep ([p.v,red]$VPoly)::Rep iteratedInitials p == p case R => [] p := leadingCoefficient(p.ts)$D cons(p,iteratedInitials(p)) localDeepestInitial (p : $) : $ == p case R => p localDeepestInitial leadingCoefficient(p.ts)$D deepestInitial p == p case R => error"Error in deepestInitial from NSMP : #1 has no variables." localDeepestInitial leadingCoefficient(p.ts)$D mainMonomial p == zero? p => error"Error in mainMonomial from NSMP : the argument is zero" p case R => 1$$ monomial(1$$,p.v,degree(p.ts)$D) leastMonomial p == zero? p => error"Error in leastMonomial from NSMP : the argument is zero" p case R => 1$$ monomial(1$$,p.v,minimumDegree(p.ts)$D) mainCoefficients p == zero? p => error"Error in mainCoefficients from NSMP : the argument is zero" p case R => [p] coefficients(p.ts)$D leadingCoefficient(p:$,x:VarSet):$ == (p case R) => p p.v = x => leadingCoefficient(p.ts)$D zero? (d := degree(p,x)) => p coefficient(p,x,d) localMonicModulo(a:$,b:$):$ == -- b is assumed to have initial 1 a case R => a a.v < b.v => a mM: $ if a.v > b.v then m : D := map(localMonicModulo(#1,b),a.ts)$SUP2 else m : D := monicModulo(a.ts,b.ts)$D if ground?(m)$D then mM := (ground(m)$D)::Rep else mM := ([a.v,m]$VPoly)::Rep mM monicModulo (a,b) == b case R => error"Error in monicModulo from NSMP : #2 is constant" ib : $ := init(b)@$ not ground?(ib)$$ => error"Error in monicModulo from NSMP : #2 is not monic" mM : $ if not one?(ib)$$ then r : R := ground(ib)$$ rec : Union(R,"failed"):= recip(r)$R (rec case "failed") => error"Error in monicModulo from NSMP : #2 is not monic" a case R => a a := (rec::R) * a b := (rec::R) * b mM := ib * localMonicModulo (a,b) else mM := localMonicModulo (a,b) mM prem(a:$, b:$): $ == -- with pseudoRemainder$NSUP b case R => error "in prem$NSMP: ground? #2" db: N := degree(b.ts)$D lcb: $ := leadingCoefficient(b.ts)$D test: Z := degree(a,b.v)::Z - db delta: Z := max(test + 1$Z, 0$Z) (a case R) or (a.v < b.v) => lcb ** (delta::N) * a a.v = b.v => r: D := pseudoRemainder(a.ts,b.ts)$D ground?(r) => return (ground(r)$D)::Rep ([a.v,r]$VPoly)::Rep while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,b.v),b.v,test::N) a := lcb * a - term * b delta := delta - 1$Z test := degree(a,b.v)::Z - db lcb ** (delta::N) * a pquo (a:$, b:$) : $ == cPS := lazyPseudoDivide (a,b) c := (cPS.coef) ** (cPS.gap) c * cPS.quotient pseudoDivide(a:$, b:$): Record (quotient : $, remainder : $) == -- from RPOLCAT cPS := lazyPseudoDivide(a,b) c := (cPS.coef) ** (cPS.gap) [c * cPS.quotient, c * cPS.remainder] lazyPrem(a:$, b:$): $ == -- with lazyPseudoRemainder$NSUP -- Uses leadingCoefficient: ($, V) -> $ b case R => error "in lazyPrem$NSMP: ground? #2" (a case R) or (a.v < b.v) => a a.v = b.v => PSimp(lazyPseudoRemainder(a.ts,b.ts)$D,a.v) db: N := degree(b.ts)$D lcb: $ := leadingCoefficient(b.ts)$D test: Z := degree(a,b.v)::Z - db while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,b.v),b.v,test::N) a := lcb * a - term * b test := degree(a,b.v)::Z - db a lazyPquo (a:$, b:$) : $ == -- with lazyPseudoQuotient$NSUP b case R => error " in lazyPquo$NSMP: #2 is conctant" (a case R) or (a.v < b.v) => 0 a.v = b.v => PSimp(lazyPseudoQuotient(a.ts,b.ts)$D,a.v) db: N := degree(b.ts)$D lcb: $ := leadingCoefficient(b.ts)$D test: Z := degree(a,b.v)::Z - db q := 0$$ test: Z := degree(a,b.v)::Z - db while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,b.v),b.v,test::N) a := lcb * a - term * b q := lcb * q + term test := degree(a,b.v)::Z - db q lazyPseudoDivide(a:$, b:$): Record(coef:$, gap: N,quotient:$, remainder:$) == -- with lazyPseudoDivide$NSUP b case R => error " in lazyPseudoDivide$NSMP: #2 is conctant" (a case R) or (a.v < b.v) => [1$$,0$N,0$$,a] a.v = b.v => cgqr := lazyPseudoDivide(a.ts,b.ts) [cgqr.coef, cgqr.gap, PSimp(cgqr.quotient,a.v), PSimp(cgqr.remainder,a.v)] db: N := degree(b.ts)$D lcb: $ := leadingCoefficient(b.ts)$D test: Z := degree(a,b.v)::Z - db q := 0$$ delta: Z := max(test + 1$Z, 0$Z) while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,b.v),b.v,test::N) a := lcb * a - term * b q := lcb * q + term delta := delta - 1$Z test := degree(a,b.v)::Z - db [lcb, (delta::N), q, a] lazyResidueClass(a:$, b:$): Record(polnum:$, polden:$, power:N) == -- with lazyResidueClass$NSUP b case R => error " in lazyResidueClass$NSMP: #2 is conctant" lcb: $ := leadingCoefficient(b.ts)$D (a case R) or (a.v < b.v) => [a,lcb,0] a.v = b.v => lrc := lazyResidueClass(a.ts,b.ts)$D [PSimp(lrc.polnum,a.v), lrc.polden, lrc.power] db: N := degree(b.ts)$D test: Z := degree(a,b.v)::Z - db pow: N := 0 while not zero?(a) and not negative?(test) repeat term := monomial(leadingCoefficient(a,b.v),b.v,test::N) a := lcb * a - term * b pow := pow + 1 test := degree(a,b.v)::Z - db [a, lcb, pow] if R has IntegralDomain then packD := PseudoRemainderSequence($,D) exactQuo(x:$, y:$):$ == ex: Union($,"failed") := x exquo$$ y (ex case $) => ex::$ error "in exactQuotient$NSMP: bad args" LazardQuotient(x:$, y:$, n: N):$ == zero?(n) => error("LazardQuotient$NSMP : n = 0") one?(n) => x a: N := 1 while n >= (b := 2*a) repeat a := b c: $ := x n := (n - a)::N repeat one?(a) => return c a := a quo 2 c := exactQuo(c*c,y) if n >= a then ( c := exactQuo(c*x,y) ; n := (n - a)::N ) LazardQuotient2(p:$, a:$, b:$, n: N) == zero?(n) => error " in LazardQuotient2$NSMP: bad #4" one?(n) => p c: $ := LazardQuotient(a,b,(n-1)::N) exactQuo(c*p,b) next_subResultant2(p:$, q:$, z:$, s:$) == PSimp(next_sousResultant2(p.ts,q.ts,z.ts,s)$packD,p.v) subResultantGcd(a:$, b:$): $ == (a case R) or (b case R) => error "subResultantGcd$NSMP: one arg is constant" a.v ~= b.v => error "subResultantGcd$NSMP: mvar(#1) ~= mvar(#2)" PSimp(subResultantGcd(a.ts,b.ts),a.v) halfExtendedSubResultantGcd1(a:$,b:$): Record (gcd: $, coef1: $) == (a case R) or (b case R) => error "halfExtendedSubResultantGcd1$NSMP: one arg is constant" a.v ~= b.v => error "halfExtendedSubResultantGcd1$NSMP: mvar(#1) ~= mvar(#2)" hesrg := halfExtendedSubResultantGcd1(a.ts,b.ts)$D [PSimp(hesrg.gcd,a.v), PSimp(hesrg.coef1,a.v)] halfExtendedSubResultantGcd2(a:$,b:$): Record (gcd: $, coef2: $) == (a case R) or (b case R) => error "halfExtendedSubResultantGcd2$NSMP: one arg is constant" a.v ~= b.v => error "halfExtendedSubResultantGcd2$NSMP: mvar(#1) ~= mvar(#2)" hesrg := halfExtendedSubResultantGcd2(a.ts,b.ts)$D [PSimp(hesrg.gcd,a.v), PSimp(hesrg.coef2,a.v)] extendedSubResultantGcd(a:$,b:$): Record (gcd: $, coef1: $, coef2: $) == (a case R) or (b case R) => error "extendedSubResultantGcd$NSMP: one arg is constant" a.v ~= b.v => error "extendedSubResultantGcd$NSMP: mvar(#1) ~= mvar(#2)" esrg := extendedSubResultantGcd(a.ts,b.ts)$D [PSimp(esrg.gcd,a.v),PSimp(esrg.coef1,a.v),PSimp(esrg.coef2,a.v)] resultant(a:$, b:$): $ == (a case R) or (b case R) => error "resultant$NSMP: one arg is constant" a.v ~= b.v => error "resultant$NSMP: mvar(#1) ~= mvar(#2)" resultant(a.ts,b.ts)$D subResultantChain(a:$, b:$): List $ == (a case R) or (b case R) => error "subResultantChain$NSMP: one arg is constant" a.v ~= b.v => error "subResultantChain$NSMP: mvar(#1) ~= mvar(#2)" [PSimp(up,a.v) for up in subResultantsChain(a.ts,b.ts)] lastSubResultant(a:$, b:$): $ == (a case R) or (b case R) => error "lastSubResultant$NSMP: one arg is constant" a.v ~= b.v => error "lastSubResultant$NSMP: mvar(#1) ~= mvar(#2)" PSimp(lastSubResultant(a.ts,b.ts),a.v) if R has EuclideanDomain then exactQuotient (a:$,b:R) == one? b => a a case R => (a::R quo$R b)::$ ([a.v, map(exactQuotient(#1,b),a.ts)$SUP2]$VPoly)::Rep exactQuotient! (a:$,b:R) == one? b => a a case R => (a::R quo$R b)::$ a.ts := map(exactQuotient!(#1,b),a.ts)$SUP2 a else exactQuotient (a:$,b:R) == one? b => a a case R => ((a::R exquo$R b)::R)::$ ([a.v, map(exactQuotient(#1,b),a.ts)$SUP2]$VPoly)::Rep exactQuotient! (a:$,b:R) == one? b => a a case R => ((a::R exquo$R b)::R)::$ a.ts := map(exactQuotient!(#1,b),a.ts)$SUP2 a if R has GcdDomain then localGcd(r:R,p:$):R == p case R => gcd(r,p::R)$R gcd(r,content(p))$R gcd(r:R,p:$):R == one? r => r zero? p => r localGcd(r,p) content p == p case R => p up : D := p.ts r := 0$R while (not zero? up) and (not one? r) repeat r := localGcd(r,leadingCoefficient(up)) up := reductum up r primitivePart! p == zero? p => p p case R => 1$$ cp := content(p) p.ts := unitCanonical(map(exactQuotient!(#1,cp),p.ts)$SUP2)$D p @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain NSUP NewSparseUnivariatePolynomial>> <<package NSUP2 NewSparseUnivariatePolynomialFunctions2>> <<category RPOLCAT RecursivePolynomialCategory>> <<domain NSMP NewSparseMultivariatePolynomial>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}