\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra naalg.spad} \author{Johannes Grabmeier, Robert Wisbauer} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain ALGSC AlgebraGivenByStructuralConstants} <<domain ALGSC AlgebraGivenByStructuralConstants>>= )abbrev domain ALGSC AlgebraGivenByStructuralConstants ++ Authors: J. Grabmeier, R. Wisbauer ++ Date Created: 01 March 1991 ++ Date Last Updated: 22 January 1992 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: algebra, structural constants ++ Reference: ++ R.D. Schafer: An Introduction to Nonassociative Algebras ++ Academic Press, New York, 1966 ++ Description: ++ AlgebraGivenByStructuralConstants implements finite rank algebras ++ over a commutative ring, given by the structural constants \spad{gamma} ++ with respect to a fixed basis \spad{[a1,..,an]}, where ++ \spad{gamma} is an \spad{n}-vector of n by n matrices ++ \spad{[(gammaijk) for k in 1..rank()]} defined by ++ \spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. ++ The symbols for the fixed basis ++ have to be given as a list of symbols. AlgebraGivenByStructuralConstants(R:Field, n : PositiveInteger,_ ls : List Symbol, gamma: Vector Matrix R ): public == private where V ==> Vector M ==> Matrix I ==> Integer NNI ==> NonNegativeInteger REC ==> Record(particular: Union(V R,"failed"),basis: List V R) LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) --public ==> FramedNonAssociativeAlgebra(R) with public ==> Join(FramedNonAssociativeAlgebra(R), _ LeftModule(SquareMatrix(n,R)) ) with coerce : Vector R -> % ++ coerce(v) converts a vector to a member of the algebra ++ by forming a linear combination with the basis element. ++ Note: the vector is assumed to have length equal to the ++ dimension of the algebra. private ==> DirectProduct(n,R) add Rep := DirectProduct(n,R) x,y : % dp : DirectProduct(n,R) v : V R recip(x) == recip(x)$FiniteRankNonAssociativeAlgebra_&(%,R) (m:SquareMatrix(n,R))*(x:%) == apply((m :: Matrix R),x) coerce v == directProduct(v) :: % structuralConstants() == gamma coordinates(x) == vector(entries(x :: Rep)$Rep)$Vector(R) coordinates(x,b) == --not (maxIndex b = n) => -- error("coordinates: your 'basis' has not the right length") m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R) for i in 1..m repeat setColumn_!(transitionMatrix,i,coordinates(b.i)) res : REC := solve(transitionMatrix,coordinates(x))$LSMP if (not every?(zero?$R,first res.basis)) then error("coordinates: warning your 'basis' is linearly dependent") (res.particular case "failed") => error("coordinates: first argument is not in linear span of second argument") (res.particular) :: (Vector R) basis() == [unitVector(i::PositiveInteger)::% for i in 1..n] someBasis() == basis()$% rank() == n elt(x,i) == elt(x:Rep,i)$Rep coerce(x:%):OutputForm == zero?(x::Rep)$Rep => (0$R) :: OutputForm le : List OutputForm := nil for i in 1..n repeat coef : R := elt(x::Rep,i) not zero?(coef)$R => -- one?(coef)$R => ((coef) = 1)$R => -- sy : OutputForm := elt(ls,i)$(List Symbol) :: OutputForm le := cons(elt(ls,i)$(List Symbol) :: OutputForm, le) le := cons(coef :: OutputForm * elt(ls,i)$(List Symbol)_ :: OutputForm, le) reduce("+",le) x * y == v : Vector R := new(n,0) for k in 1..n repeat h : R := 0 for i in 1..n repeat for j in 1..n repeat h := h +$R elt(x,i) *$R elt(y,j) *$R elt(gamma.k,i,j ) v.k := h directProduct v alternative?() == for i in 1..n repeat -- expression for check of left alternative is symmetric in i and j: -- expression for check of right alternative is symmetric in j and k: for j in 1..i-1 repeat for k in j..n repeat -- right check for r in 1..n repeat res := 0$R for l in 1..n repeat res := res - _ (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_ elt(gamma.r,l,j) ) not zero? res => messagePrint("algebra is not right alternative")$OutputForm return false for j in i..n repeat for k in 1..j-1 repeat -- left check for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + _ (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_ elt(gamma.r,j,l) ) not (zero? res) => messagePrint("algebra is not left alternative")$OutputForm return false for k in j..n repeat -- left check for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + _ (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_ elt(gamma.r,j,l) ) not (zero? res) => messagePrint("algebra is not left alternative")$OutputForm return false -- right check for r in 1..n repeat res := 0$R for l in 1..n repeat res := res - _ (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_ elt(gamma.r,l,j) ) not (zero? res) => messagePrint("algebra is not right alternative")$OutputForm return false messagePrint("algebra satisfies 2*associator(a,b,b) = 0 = 2*associator(a,a,b) = 0")$OutputForm true -- should be in the category, but is not exported -- conditionsForIdempotents b == -- n := rank() -- --gamma : Vector Matrix R := structuralConstants b -- listOfNumbers : List String := [STRINGIMAGE(q)$Lisp for q in 1..n] -- symbolsForCoef : Vector Symbol := -- [concat("%", concat("x", i))::Symbol for i in listOfNumbers] -- conditions : List Polynomial R := [] -- for k in 1..n repeat -- xk := symbolsForCoef.k -- p : Polynomial R := monomial( - 1$Polynomial(R), [xk], [1] ) -- for i in 1..n repeat -- for j in 1..n repeat -- xi := symbolsForCoef.i -- xj := symbolsForCoef.j -- p := p + monomial(_ -- elt((gamma.k),i,j) :: Polynomial(R), [xi,xj], [1,1]) -- conditions := cons(p,conditions) -- conditions associative?() == for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_ elt(gamma.l,j,k)*elt(gamma.r,i,l) not (zero? res) => messagePrint("algebra is not associative")$OutputForm return false messagePrint("algebra is associative")$OutputForm true antiAssociative?() == for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)+_ elt(gamma.l,j,k)*elt(gamma.r,i,l) not (zero? res) => messagePrint("algebra is not anti-associative")$OutputForm return false messagePrint("algebra is anti-associative")$OutputForm true commutative?() == for i in 1..n repeat for j in (i+1)..n repeat for k in 1..n repeat not ( elt(gamma.k,i,j)=elt(gamma.k,j,i) ) => messagePrint("algebra is not commutative")$OutputForm return false messagePrint("algebra is commutative")$OutputForm true antiCommutative?() == for i in 1..n repeat for j in i..n repeat for k in 1..n repeat not zero? (i=j => elt(gamma.k,i,i); elt(gamma.k,i,j)+elt(gamma.k,j,i) ) => messagePrint("algebra is not anti-commutative")$OutputForm return false messagePrint("algebra is anti-commutative")$OutputForm true leftAlternative?() == for i in 1..n repeat -- expression is symmetric in i and j: for j in i..n repeat for k in 1..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_ (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*elt(gamma.r,j,l) ) not (zero? res) => messagePrint("algebra is not left alternative")$OutputForm return false messagePrint("algebra is left alternative")$OutputForm true rightAlternative?() == for i in 1..n repeat for j in 1..n repeat -- expression is symmetric in j and k: for k in j..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res - (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_ (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*elt(gamma.r,l,j) ) not (zero? res) => messagePrint("algebra is not right alternative")$OutputForm return false messagePrint("algebra is right alternative")$OutputForm true flexible?() == for i in 1..n repeat for j in 1..n repeat -- expression is symmetric in i and k: for k in i..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_ elt(gamma.l,j,k)*elt(gamma.r,i,l)+_ elt(gamma.l,k,j)*elt(gamma.r,l,i)-_ elt(gamma.l,j,i)*elt(gamma.r,k,l) not (zero? res) => messagePrint("algebra is not flexible")$OutputForm return false messagePrint("algebra is flexible")$OutputForm true lieAdmissible?() == for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for r in 1..n repeat res := 0$R for l in 1..n repeat res := res_ + (elt(gamma.l,i,j)-elt(gamma.l,j,i))*(elt(gamma.r,l,k)-elt(gamma.r,k,l)) _ + (elt(gamma.l,j,k)-elt(gamma.l,k,j))*(elt(gamma.r,l,i)-elt(gamma.r,i,l)) _ + (elt(gamma.l,k,i)-elt(gamma.l,i,k))*(elt(gamma.r,l,j)-elt(gamma.r,j,l)) not (zero? res) => messagePrint("algebra is not Lie admissible")$OutputForm return false messagePrint("algebra is Lie admissible")$OutputForm true jordanAdmissible?() == recip(2 * 1$R) case "failed" => messagePrint("this algebra is not Jordan admissible, as 2 is not invertible in the ground ring")$OutputForm false for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for w in 1..n repeat for t in 1..n repeat res := 0$R for l in 1..n repeat for r in 1..n repeat res := res_ + (elt(gamma.l,i,j)+elt(gamma.l,j,i))_ * (elt(gamma.r,w,k)+elt(gamma.r,k,w))_ * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ - (elt(gamma.r,w,k)+elt(gamma.r,k,w))_ * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ * (elt(gamma.t,i,l)+elt(gamma.t,l,i))_ + (elt(gamma.l,w,j)+elt(gamma.l,j,w))_ * (elt(gamma.r,k,i)+elt(gamma.r,i,k))_ * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ - (elt(gamma.r,k,i)+elt(gamma.r,k,i))_ * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ * (elt(gamma.t,w,l)+elt(gamma.t,l,w))_ + (elt(gamma.l,k,j)+elt(gamma.l,j,k))_ * (elt(gamma.r,i,w)+elt(gamma.r,w,i))_ * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_ - (elt(gamma.r,i,w)+elt(gamma.r,w,i))_ * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_ * (elt(gamma.t,k,l)+elt(gamma.t,l,k)) not (zero? res) => messagePrint("algebra is not Jordan admissible")$OutputForm return false messagePrint("algebra is Jordan admissible")$OutputForm true jordanAlgebra?() == recip(2 * 1$R) case "failed" => messagePrint("this is not a Jordan algebra, as 2 is not invertible in the ground ring")$OutputForm false not commutative?() => messagePrint("this is not a Jordan algebra")$OutputForm false for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for l in 1..n repeat for t in 1..n repeat res := 0$R for r in 1..n repeat for s in 1..n repeat res := res + _ elt(gamma.r,i,j)*elt(gamma.s,l,k)*elt(gamma.t,r,s) - _ elt(gamma.r,l,k)*elt(gamma.s,j,r)*elt(gamma.t,i,s) + _ elt(gamma.r,l,j)*elt(gamma.s,k,k)*elt(gamma.t,r,s) - _ elt(gamma.r,k,i)*elt(gamma.s,j,r)*elt(gamma.t,l,s) + _ elt(gamma.r,k,j)*elt(gamma.s,i,k)*elt(gamma.t,r,s) - _ elt(gamma.r,i,l)*elt(gamma.s,j,r)*elt(gamma.t,k,s) not zero? res => messagePrint("this is not a Jordan algebra")$OutputForm return false messagePrint("this is a Jordan algebra")$OutputForm true jacobiIdentity?() == for i in 1..n repeat for j in 1..n repeat for k in 1..n repeat for r in 1..n repeat res := 0$R for s in 1..n repeat res := res + elt(gamma.r,i,j)*elt(gamma.s,j,k) +_ elt(gamma.r,j,k)*elt(gamma.s,k,i) +_ elt(gamma.r,k,i)*elt(gamma.s,i,j) not zero? res => messagePrint("Jacobi identity does not hold")$OutputForm return false messagePrint("Jacobi identity holds")$OutputForm true @ \section{package SCPKG StructuralConstantsPackage} <<package SCPKG StructuralConstantsPackage>>= )abbrev package SCPKG StructuralConstantsPackage ++ Authors: J. Grabmeier ++ Date Created: 02 April 1992 ++ Date Last Updated: 14 April 1992 ++ Basic Operations: ++ Related Constructors: AlgebraPackage, AlgebraGivenByStructuralConstants ++ Also See: ++ AMS Classifications: ++ Keywords: structural constants ++ Reference: ++ Description: ++ StructuralConstantsPackage provides functions creating ++ structural constants from a multiplication tables or a basis ++ of a matrix algebra and other useful functions in this context. StructuralConstantsPackage(R:Field): public == private where L ==> List S ==> Symbol FRAC ==> Fraction POLY ==> Polynomial V ==> Vector M ==> Matrix REC ==> Record(particular: Union(V R,"failed"),basis: List V R) LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) public ==> with -- what we really want to have here is a matrix over -- linear polynomials in the list of symbols, having arbitrary -- coefficients from a ring extension of R, e.g. FRAC POLY R. structuralConstants : (L S, M FRAC POLY R) -> V M FRAC POLY R ++ structuralConstants(ls,mt) determines the structural constants ++ of an algebra with generators ls and multiplication table mt, the ++ entries of which must be given as linear polynomials in the ++ indeterminates given by ls. The result is in particular useful ++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants} ++ and \spadtype{GenericNonAssociativeAlgebra}. structuralConstants : (L S, M POLY R) -> V M POLY R ++ structuralConstants(ls,mt) determines the structural constants ++ of an algebra with generators ls and multiplication table mt, the ++ entries of which must be given as linear polynomials in the ++ indeterminates given by ls. The result is in particular useful ++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants} ++ and \spadtype{GenericNonAssociativeAlgebra}. structuralConstants: L M R -> V M R ++ structuralConstants(basis) takes the basis of a matrix ++ algebra, e.g. the result of \spadfun{basisOfCentroid} and calculates ++ the structural constants. ++ Note, that the it is not checked, whether basis really is a ++ basis of a matrix algebra. coordinates: (M R, L M R) -> V R ++ coordinates(a,[v1,...,vn]) returns the coordinates of \spad{a} ++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}. private ==> add matrix2Vector: M R -> V R matrix2Vector m == lili : L L R := listOfLists m --li : L R := reduce(concat, listOfLists m) li : L R := reduce(concat, lili) construct(li)$(V R) coordinates(x,b) == m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger n : NonNegativeInteger := nrows(b.1) * ncols(b.1) transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R) for i in 1..m repeat setColumn_!(transitionMatrix,i,matrix2Vector(b.i)) res : REC := solve(transitionMatrix,matrix2Vector(x))$LSMP if (not every?(zero?$R,first res.basis)) then error("coordinates: the second argument is linearly dependent") (res.particular case "failed") => error("coordinates: first argument is not in linear span of _ second argument") (res.particular) :: (Vector R) structuralConstants b == --n := rank() -- be careful with the possibility that b is not a basis m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger sC : Vector Matrix R := [new(m,m,0$R) for k in 1..m] for i in 1..m repeat for j in 1..m repeat covec : Vector R := coordinates(b.i * b.j, b)$% for k in 1..m repeat setelt( sC.k, i, j, covec.k ) sC structuralConstants(ls:L S, mt: M POLY R) == nn := #(ls) nrows(mt) ~= nn or ncols(mt) ~= nn => error "structuralConstants: size of second argument does not _ agree with number of generators" gamma : L M POLY R := [] lscopy : L S := copy ls while not null lscopy repeat mat : M POLY R := new(nn,nn,0) s : S := first lscopy for i in 1..nn repeat for j in 1..nn repeat p := qelt(mt,i,j) totalDegree(p,ls) > 1 => error "structuralConstants: entries of second argument _ must be linear polynomials in the generators" if (c := coefficient(p, s, 1) ) ~= 0 then qsetelt_!(mat,i,j,c) gamma := cons(mat, gamma) lscopy := rest lscopy vector reverse gamma structuralConstants(ls:L S, mt: M FRAC POLY R) == nn := #(ls) nrows(mt) ~= nn or ncols(mt) ~= nn => error "structuralConstants: size of second argument does not _ agree with number of generators" gamma : L M FRAC(POLY R) := [] lscopy : L S := copy ls while not null lscopy repeat mat : M FRAC(POLY R) := new(nn,nn,0) s : S := first lscopy for i in 1..nn repeat for j in 1..nn repeat r := qelt(mt,i,j) q := denom(r) totalDegree(q,ls) ~= 0 => error "structuralConstants: entries of second argument _ must be (linear) polynomials in the generators" p := numer(r) totalDegree(p,ls) > 1 => error "structuralConstants: entries of second argument _ must be linear polynomials in the generators" if (c := coefficient(p, s, 1) ) ~= 0 then qsetelt_!(mat,i,j,c/q) gamma := cons(mat, gamma) lscopy := rest lscopy vector reverse gamma @ \section{package ALGPKG AlgebraPackage} <<package ALGPKG AlgebraPackage>>= )abbrev package ALGPKG AlgebraPackage ++ Authors: J. Grabmeier, R. Wisbauer ++ Date Created: 04 March 1991 ++ Date Last Updated: 04 April 1992 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: rank, nucleus, nucloid, structural constants ++ Reference: ++ R.S. Pierce: Associative Algebras ++ Graduate Texts in Mathematics 88 ++ Springer-Verlag, Heidelberg, 1982, ISBN 0-387-90693-2 ++ ++ R.D. Schafer: An Introduction to Nonassociative Algebras ++ Academic Press, New York, 1966 ++ ++ A. Woerz-Busekros: Algebra in Genetics ++ Lectures Notes in Biomathematics 36, ++ Springer-Verlag, Heidelberg, 1980 ++ Description: ++ AlgebraPackage assembles a variety of useful functions for ++ general algebras. AlgebraPackage(R:IntegralDomain, A: FramedNonAssociativeAlgebra(R)): _ public == private where V ==> Vector M ==> Matrix I ==> Integer NNI ==> NonNegativeInteger REC ==> Record(particular: Union(V R,"failed"),basis: List V R) LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R) public ==> with leftRank: A -> NonNegativeInteger ++ leftRank(x) determines the number of linearly independent elements ++ in \spad{x*b1},...,\spad{x*bn}, ++ where \spad{b=[b1,...,bn]} is a basis. rightRank: A -> NonNegativeInteger ++ rightRank(x) determines the number of linearly independent elements ++ in \spad{b1*x},...,\spad{bn*x}, ++ where \spad{b=[b1,...,bn]} is a basis. doubleRank: A -> NonNegativeInteger ++ doubleRank(x) determines the number of linearly ++ independent elements ++ in \spad{b1*x},...,\spad{x*bn}, ++ where \spad{b=[b1,...,bn]} is a basis. weakBiRank: A -> NonNegativeInteger ++ weakBiRank(x) determines the number of ++ linearly independent elements ++ in the \spad{bi*x*bj}, \spad{i,j=1,...,n}, ++ where \spad{b=[b1,...,bn]} is a basis. biRank: A -> NonNegativeInteger ++ biRank(x) determines the number of linearly independent elements ++ in \spad{x}, \spad{x*bi}, \spad{bi*x}, \spad{bi*x*bj}, ++ \spad{i,j=1,...,n}, ++ where \spad{b=[b1,...,bn]} is a basis. ++ Note: if \spad{A} has a unit, ++ then \spadfunFrom{doubleRank}{AlgebraPackage}, ++ \spadfunFrom{weakBiRank}{AlgebraPackage} ++ and \spadfunFrom{biRank}{AlgebraPackage} coincide. basisOfCommutingElements: () -> List A ++ basisOfCommutingElements() returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = commutator(x,a)} for all ++ \spad{a} in \spad{A}. basisOfLeftAnnihilator: A -> List A ++ basisOfLeftAnnihilator(a) returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = x*a}. basisOfRightAnnihilator: A -> List A ++ basisOfRightAnnihilator(a) returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = a*x}. basisOfLeftNucleus: () -> List A ++ basisOfLeftNucleus() returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = associator(x,a,b)} ++ for all \spad{a},b in \spad{A}. basisOfRightNucleus: () -> List A ++ basisOfRightNucleus() returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = associator(a,b,x)} ++ for all \spad{a},b in \spad{A}. basisOfMiddleNucleus: () -> List A ++ basisOfMiddleNucleus() returns a basis of the space of ++ all x of \spad{A} satisfying \spad{0 = associator(a,x,b)} ++ for all \spad{a},b in \spad{A}. basisOfNucleus: () -> List A ++ basisOfNucleus() returns a basis of the space of all x of \spad{A} satisfying ++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} ++ for all \spad{a},b in \spad{A}. basisOfCenter: () -> List A ++ basisOfCenter() returns a basis of the space of ++ all x of \spad{A} satisfying \spad{commutator(x,a) = 0} and ++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} ++ for all \spad{a},b in \spad{A}. basisOfLeftNucloid:()-> List Matrix R ++ basisOfLeftNucloid() returns a basis of the space of ++ endomorphisms of \spad{A} as right module. ++ Note: left nucloid coincides with left nucleus if \spad{A} has a unit. basisOfRightNucloid:()-> List Matrix R ++ basisOfRightNucloid() returns a basis of the space of ++ endomorphisms of \spad{A} as left module. ++ Note: right nucloid coincides with right nucleus if \spad{A} has a unit. basisOfCentroid:()-> List Matrix R ++ basisOfCentroid() returns a basis of the centroid, i.e. the ++ endomorphism ring of \spad{A} considered as \spad{(A,A)}-bimodule. radicalOfLeftTraceForm: () -> List A ++ radicalOfLeftTraceForm() returns basis for null space of ++ \spad{leftTraceMatrix()}, if the algebra is ++ associative, alternative or a Jordan algebra, then this ++ space equals the radical (maximal nil ideal) of the algebra. if R has EuclideanDomain then basis : V A -> V A ++ basis(va) selects a basis from the elements of va. private ==> add -- constants n : PositiveInteger := rank()$A n2 : PositiveInteger := n*n n3 : PositiveInteger := n*n2 gamma : Vector Matrix R := structuralConstants()$A -- local functions convVM : Vector R -> Matrix R -- converts n2-vector to (n,n)-matrix row by row convMV : Matrix R -> Vector R -- converts n-square matrix to n2-vector row by row convVM v == cond : Matrix(R) := new(n,n,0$R)$M(R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat z := z+1 setelt(cond,i,j,v.z) cond -- convMV m == -- vec : Vector(R) := new(n*n,0$R) -- z : Integer := 0 -- for i in 1..n repeat -- for j in 1..n repeat -- z := z+1 -- setelt(vec,z,elt(m,i,j)) -- vec radicalOfLeftTraceForm() == ma : M R := leftTraceMatrix()$A map(represents, nullSpace ma)$ListFunctions2(Vector R, A) basisOfLeftAnnihilator a == ca : M R := transpose (coordinates(a) :: M R) cond : M R := reduce(vertConcat$(M R), [ca*transpose(gamma.i) for i in 1..#gamma]) map(represents, nullSpace cond)$ListFunctions2(Vector R, A) basisOfRightAnnihilator a == ca : M R := transpose (coordinates(a) :: M R) cond : M R := reduce(vertConcat$(M R), [ca*(gamma.i) for i in 1..#gamma]) map(represents, nullSpace cond)$ListFunctions2(Vector R, A) basisOfLeftNucloid() == cond : Matrix(R) := new(n3,n2,0$R)$M(R) condo: Matrix(R) := new(n3,n2,0$R)$M(R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat r1 : Integer := 0 for k in 1..n repeat z := z + 1 -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) r2 : Integer := i for r in 1..n repeat r1 := r1 + 1 -- here r1 equals (k-1)*n+r (loop-invariant) setelt(cond,z,r1,elt(gamma.r,i,j)) -- here r2 equals (r-1)*n+i (loop-invariant) setelt(condo,z,r2,-elt(gamma.k,r,j)) r2 := r2 + n [convVM(sol) for sol in nullSpace(cond+condo)] basisOfCommutingElements() == --gamma1 := first gamma --gamma1 := gamma1 - transpose gamma1 --cond : Matrix(R) := gamma1 :: Matrix(R) --for i in 2..n repeat -- gammak := gamma.i -- gammak := gammak - transpose gammak -- cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R) --map(represents, nullSpace cond)$ListFunctions2(Vector R, A) cond : M R := reduce(vertConcat$(M R), [(gam := gamma.i) - transpose gam for i in 1..#gamma]) map(represents, nullSpace cond)$ListFunctions2(Vector R, A) basisOfLeftNucleus() == condi: Matrix(R) := new(n3,n,0$R)$Matrix(R) z : Integer := 0 for k in 1..n repeat for j in 1..n repeat for s in 1..n repeat z := z+1 for i in 1..n repeat entry : R := 0 for l in 1..n repeat entry := entry+elt(gamma.l,j,k)*elt(gamma.s,i,l)_ -elt(gamma.l,i,j)*elt(gamma.s,l,k) setelt(condi,z,i,entry)$Matrix(R) map(represents, nullSpace condi)$ListFunctions2(Vector R,A) basisOfRightNucleus() == condo : Matrix(R) := new(n3,n,0$R)$Matrix(R) z : Integer := 0 for k in 1..n repeat for j in 1..n repeat for s in 1..n repeat z := z+1 for i in 1..n repeat entry : R := 0 for l in 1..n repeat entry := entry+elt(gamma.l,k,i)*elt(gamma.s,j,l) _ -elt(gamma.l,j,k)*elt(gamma.s,l,i) setelt(condo,z,i,entry)$Matrix(R) map(represents, nullSpace condo)$ListFunctions2(Vector R,A) basisOfMiddleNucleus() == conda : Matrix(R) := new(n3,n,0$R)$Matrix(R) z : Integer := 0 for k in 1..n repeat for j in 1..n repeat for s in 1..n repeat z := z+1 for i in 1..n repeat entry : R := 0 for l in 1..n repeat entry := entry+elt(gamma.l,j,i)*elt(gamma.s,l,k) -elt(gamma.l,i,k)*elt(gamma.s,j,l) setelt(conda,z,i,entry)$Matrix(R) map(represents, nullSpace conda)$ListFunctions2(Vector R,A) basisOfNucleus() == condi: Matrix(R) := new(3*n3,n,0$R)$Matrix(R) z : Integer := 0 u : Integer := n3 w : Integer := 2*n3 for k in 1..n repeat for j in 1..n repeat for s in 1..n repeat z := z+1 u := u+1 w := w+1 for i in 1..n repeat entry : R := 0 enter : R := 0 ent : R := 0 for l in 1..n repeat entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ - elt(gamma.l,i,j)*elt(gamma.s,l,k) enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _ - elt(gamma.l,j,k)*elt(gamma.s,l,i) ent := ent + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ - elt(gamma.l,j,i)*elt(gamma.s,l,k) setelt(condi,z,i,entry)$Matrix(R) setelt(condi,u,i,enter)$Matrix(R) setelt(condi,w,i,ent)$Matrix(R) map(represents, nullSpace condi)$ListFunctions2(Vector R,A) basisOfCenter() == gamma1 := first gamma gamma1 := gamma1 - transpose gamma1 cond : Matrix(R) := gamma1 :: Matrix(R) for i in 2..n repeat gammak := gamma.i gammak := gammak - transpose gammak cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R) B := cond :: Matrix(R) condi: Matrix(R) := new(2*n3,n,0$R)$Matrix(R) z : Integer := 0 u : Integer := n3 for k in 1..n repeat for j in 1..n repeat for s in 1..n repeat z := z+1 u := u+1 for i in 1..n repeat entry : R := 0 enter : R := 0 for l in 1..n repeat entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _ - elt(gamma.l,i,j)*elt(gamma.s,l,k) enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _ - elt(gamma.l,j,k)*elt(gamma.s,l,i) setelt(condi,z,i,entry)$Matrix(R) setelt(condi,u,i,enter)$Matrix(R) D := vertConcat(condi,B)$Matrix(R) map(represents, nullSpace D)$ListFunctions2(Vector R, A) basisOfRightNucloid() == cond : Matrix(R) := new(n3,n2,0$R)$M(R) condo: Matrix(R) := new(n3,n2,0$R)$M(R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat r1 : Integer := 0 for k in 1..n repeat z := z + 1 -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) r2 : Integer := i for r in 1..n repeat r1 := r1 + 1 -- here r1 equals (k-1)*n+r (loop-invariant) setelt(cond,z,r1,elt(gamma.r,j,i)) -- here r2 equals (r-1)*n+i (loop-invariant) setelt(condo,z,r2,-elt(gamma.k,j,r)) r2 := r2 + n [convVM(sol) for sol in nullSpace(cond+condo)] basisOfCentroid() == cond : Matrix(R) := new(2*n3,n2,0$R)$M(R) condo: Matrix(R) := new(2*n3,n2,0$R)$M(R) z : Integer := 0 u : Integer := n3 for i in 1..n repeat for j in 1..n repeat r1 : Integer := 0 for k in 1..n repeat z := z + 1 u := u + 1 -- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant) -- u equals n**3 + (i-1)*n*n+(j-1)*n+k (loop-invariant) r2 : Integer := i for r in 1..n repeat r1 := r1 + 1 -- here r1 equals (k-1)*n+r (loop-invariant) setelt(cond,z,r1,elt(gamma.r,i,j)) setelt(cond,u,r1,elt(gamma.r,j,i)) -- here r2 equals (r-1)*n+i (loop-invariant) setelt(condo,z,r2,-elt(gamma.k,r,j)) setelt(condo,u,r2,-elt(gamma.k,j,r)) r2 := r2 + n [convVM(sol) for sol in nullSpace(cond+condo)] doubleRank x == cond : Matrix(R) := new(2*n,n,0$R) for k in 1..n repeat z : Integer := 0 u : Integer := n for j in 1..n repeat z := z+1 u := u+1 entry : R := 0 enter : R := 0 for i in 1..n repeat entry := entry + elt(x,i)*elt(gamma.k,j,i) enter := enter + elt(x,i)*elt(gamma.k,i,j) setelt(cond,z,k,entry)$Matrix(R) setelt(cond,u,k,enter)$Matrix(R) rank(cond)$(M R) weakBiRank(x) == cond : Matrix(R) := new(n2,n,0$R)$Matrix(R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat z := z+1 for k in 1..n repeat entry : R := 0 for l in 1..n repeat for s in 1..n repeat entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j) setelt(cond,z,k,entry)$Matrix(R) rank(cond)$(M R) biRank(x) == cond : Matrix(R) := new(n2+2*n+1,n,0$R)$Matrix(R) z : Integer := 0 for j in 1..n repeat for i in 1..n repeat z := z+1 for k in 1..n repeat entry : R := 0 for l in 1..n repeat for s in 1..n repeat entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j) setelt(cond,z,k,entry)$Matrix(R) u : Integer := n*n w : Integer := n*(n+1) c := n2 + 2*n + 1 for j in 1..n repeat u := u+1 w := w+1 for k in 1..n repeat entry : R := 0 enter : R := 0 for i in 1..n repeat entry := entry + elt(x,i)*elt(gamma.k,j,i) enter := enter + elt(x,i)*elt(gamma.k,i,j) setelt(cond,u,k,entry)$Matrix(R) setelt(cond,w,k,enter)$Matrix(R) setelt(cond,c,j, elt(x,j)) rank(cond)$(M R) leftRank x == cond : Matrix(R) := new(n,n,0$R) for k in 1..n repeat for j in 1..n repeat entry : R := 0 for i in 1..n repeat entry := entry + elt(x,i)*elt(gamma.k,i,j) setelt(cond,j,k,entry)$Matrix(R) rank(cond)$(M R) rightRank x == cond : Matrix(R) := new(n,n,0$R) for k in 1..n repeat for j in 1..n repeat entry : R := 0 for i in 1..n repeat entry := entry + elt(x,i)*elt(gamma.k,j,i) setelt(cond,j,k,entry)$Matrix(R) rank(cond)$(M R) if R has EuclideanDomain then basis va == v : V A := remove(zero?, va)$(V A) v : V A := removeDuplicates v empty? v => [0$A] m : Matrix R := coerce(coordinates(v.1))$(Matrix R) for i in 2..maxIndex v repeat m := horizConcat(m,coerce(coordinates(v.i))$(Matrix R) ) m := rowEchelon m lj : List Integer := [] h : Integer := 1 mRI : Integer := maxRowIndex m mCI : Integer := maxColIndex m finished? : Boolean := false j : Integer := 1 while not finished? repeat not zero? m(h,j) => -- corner found lj := cons(j,lj) h := mRI while zero? m(h,j) repeat h := h-1 finished? := (h = mRI) if not finished? then h := h+1 if j < mCI then j := j + 1 else finished? := true [v.j for j in reverse lj] @ \section{package FRNAAF2 FramedNonAssociativeAlgebraFunctions2} <<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>>= )abbrev package FRNAAF2 FramedNonAssociativeAlgebraFunctions2 ++ Author: Johannes Grabmeier ++ Date Created: 28 February 1992 ++ Date Last Updated: 28 February 1992 ++ Basic Operations: map ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: non-associative algebra ++ References: ++ Description: ++ FramedNonAssociativeAlgebraFunctions2 implements functions between ++ two framed non associative algebra domains defined over different rings. ++ The function map is used to coerce between algebras over different ++ domains having the same structural constants. FramedNonAssociativeAlgebraFunctions2(AR,R,AS,S) : Exports == Implementation where R : CommutativeRing S : CommutativeRing AR : FramedNonAssociativeAlgebra R AS : FramedNonAssociativeAlgebra S V ==> Vector Exports ==> with map: (R -> S, AR) -> AS ++ map(f,u) maps f onto the coordinates of u to get an element ++ in \spad{AS} via identification of the basis of \spad{AR} ++ as beginning part of the basis of \spad{AS}. Implementation ==> add map(fn : R -> S, u : AR): AS == rank()$AR > rank()$AS => error("map: ranks of algebras do not fit") vr : V R := coordinates u vs : V S := map(fn,vr)$VectorFunctions2(R,S) @ This line used to read: \begin{verbatim} rank()$AR = rank()$AR => represents(vs)$AS \end{verbatim} but the test is clearly always true and cannot be what was intended. Gregory Vanuxem supplied the fix below. <<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>>= rank()$AR = rank()$AS => represents(vs)$AS ba := basis()$AS represents(vs,[ba.i for i in 1..rank()$AR]) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain ALGSC AlgebraGivenByStructuralConstants>> <<package ALGPKG AlgebraPackage>> <<package SCPKG StructuralConstantsPackage>> <<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}