\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra multsqfr.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package MULTSQFR MultivariateSquareFree} <<package MULTSQFR MultivariateSquareFree>>= )abbrev package MULTSQFR MultivariateSquareFree ++Author : P.Gianni ++ This package provides the functions for the computation of the square ++ free decomposition of a multivariate polynomial. ++ It uses the package GenExEuclid for the resolution of ++ the equation \spad{Af + Bg = h} and its generalization to n polynomials ++ over an integral domain and the package \spad{MultivariateLifting} ++ for the "multivariate" lifting. MultivariateSquareFree (E,OV,R,P) : C == T where Z ==> Integer NNI ==> NonNegativeInteger R : EuclideanDomain OV : OrderedSet E : OrderedAbelianMonoidSup P : PolynomialCategory(R,E,OV) SUP ==> SparseUnivariatePolynomial P BP ==> SparseUnivariatePolynomial(R) fUnion ==> Union("nil","sqfr","irred","prime") ffSUP ==> Record(flg:fUnion,fctr:SUP,xpnt:Integer) ffP ==> Record(flg:fUnion,fctr:P,xpnt:Integer) FFE ==> Record(factor:BP,exponent:Z) FFEP ==> Record(factor:P,exponent:Z) FFES ==> Record(factor:SUP,exponent:Z) Choice ==> Record(upol:BP,Lval:List(R),Lfact:List FFE,ctpol:R) squareForm ==> Record(unitPart:P,suPart:List FFES) Twopol ==> Record(pol:SUP,polval:BP) UPCF2 ==> UnivariatePolynomialCategoryFunctions2 C == with squareFree : P -> Factored P ++ squareFree(p) computes the square free ++ decomposition of a multivariate polynomial p. squareFree : SUP -> Factored SUP ++ squareFree(p) computes the square free ++ decomposition of a multivariate polynomial p presented as ++ a univariate polynomial with multivariate coefficients. squareFreePrim : P -> Factored P ++ squareFreePrim(p) compute the square free decomposition ++ of a primitive multivariate polynomial p. ---- local functions ---- compdegd : List FFE -> Z ++ compdegd should be local univcase : (P,OV) -> Factored(P) ++ univcase should be local consnewpol : (SUP,BP,Z) -> Twopol ++ consnewpol should be local nsqfree : (SUP,List(OV), List List R) -> squareForm ++ nsqfree should be local intChoose : (SUP,List(OV),List List R) -> Choice ++ intChoose should be local coefChoose : (Z,Factored P) -> P ++ coefChoose should be local check : (List(FFE),List(FFE)) -> Boolean ++ check should be local lift : (SUP,BP,BP,P,List(OV),List(NNI),List(R)) -> Union(List(SUP),"failed") ++ lift should be local myDegree : (SUP,List OV,NNI) -> List NNI ++ myDegree should be local normDeriv2 : (BP,Z) -> BP ++ normDeriv2 should be local T == add pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R import GenExEuclid() import MultivariateLifting(E,OV,R,P) import PolynomialGcdPackage(E,OV,R,P) import FactoringUtilities(E,OV,R,P) import IntegerCombinatoricFunctions(Z) ---- Are the univariate square-free decompositions consistent? ---- ---- new square-free algorithm for primitive polynomial ---- nsqfree(oldf:SUP,lvar:List(OV),ltry:List List R) : squareForm == f:=oldf univPol := intChoose(f,lvar,ltry) -- debug msg -- if not empty? ltry then output("ltry =", (ltry::OutputForm))$OutputPackage f0:=univPol.upol --the polynomial is square-free f0=1$BP => [1$P,[[f,1]$FFES]]$squareForm lfact:List(FFE):=univPol.Lfact lval:=univPol.Lval ctf:=univPol.ctpol leadpol:Boolean:=false sqdec:List FFES := empty() exp0:Z:=0 unitsq:P:=1 lcf:P:=leadingCoefficient f if ctf^=1 then f0:=ctf*f0 f:=(ctf::P)*f lcf:=ctf*lcf sqlead:List FFEP:= empty() sqlc:Factored P:=1 if lcf^=1$P then leadpol:=true sqlc:=squareFree lcf unitsq:=unitsq*(unit sqlc) sqlead:= factors sqlc lfact:=sort(#1.exponent > #2.exponent,lfact) while lfact^=[] repeat pfact:=lfact.first (g0,exp0):=(pfact.factor,pfact.exponent) lfact:=lfact.rest lfact=[] and exp0 =1 => f := (f exquo (ctf::P))::SUP gg := unitNormal leadingCoefficient f sqdec:=cons([gg.associate*f,exp0],sqdec) return [gg.unit, sqdec]$squareForm if ctf^=1 then g0:=ctf*g0 npol:=consnewpol(f,f0,exp0) (d,d0):=(npol.pol,npol.polval) if leadpol then lcoef:=coefChoose(exp0,sqlc) else lcoef:=1$P ldeg:=myDegree(f,lvar,exp0::NNI) result:=lift(d,g0,(d0 exquo g0)::BP,lcoef,lvar,ldeg,lval) result case "failed" => return nsqfree(oldf,lvar,ltry) result0:SUP:= (result::List SUP).1 r1:SUP:=result0**(exp0:NNI) if (h:=f exquo r1) case "failed" then return nsqfree(oldf,lvar,empty()) sqdec:=cons([result0,exp0],sqdec) f:=h::SUP f0:=completeEval(h,lvar,lval) lcr:P:=leadingCoefficient result0 if leadpol and lcr^=1$P then for lpfact in sqlead while lcr^=1 repeat ground? lcr => unitsq:=(unitsq exquo lcr)::P lcr:=1$P (h1:=lcr exquo lpfact.factor) case "failed" => "next" lcr:=h1::P lpfact.exponent:=(lpfact.exponent)-exp0 [((retract f) exquo ctf)::P,sqdec]$squareForm squareFree(f:SUP) : Factored SUP == degree f =0 => fu:=squareFree retract f makeFR((unit fu)::SUP,[["sqfr",ff.fctr::SUP,ff.xpnt] for ff in factorList fu]) lvar:= "setUnion"/[variables cf for cf in coefficients f] empty? lvar => -- the polynomial is univariate upol:=map(ground,f)$UPCF2(P,SUP,R,BP) usqfr:=squareFree upol makeFR(map(coerce,unit usqfr)$UPCF2(R,BP,P,SUP), [["sqfr",map(coerce,ff.fctr)$UPCF2(R,BP,P,SUP),ff.xpnt] for ff in factorList usqfr]) lcf:=content f f:=(f exquo lcf) ::SUP lcSq:=squareFree lcf lfs:List ffSUP:=[["sqfr",ff.fctr ::SUP,ff.xpnt] for ff in factorList lcSq] partSq:=nsqfree(f,lvar,empty()) lfs:=append([["sqfr",fu.factor,fu.exponent]$ffSUP for fu in partSq.suPart],lfs) makeFR((unit lcSq * partSq.unitPart) ::SUP,lfs) squareFree(f:P) : Factored P == ground? f => makeFR(f,[]) --- the polynomial is constant --- lvar:List(OV):=variables(f) result1:List ffP:= empty() lmdeg :=minimumDegree(f,lvar) --- is the mindeg > 0 ? --- p:P:=1$P for im in 1..#lvar repeat (n:=lmdeg.im)=0 => "next im" y:=lvar.im p:=p*monomial(1$P,y,n) result1:=cons(["sqfr",y::P,n],result1) if p^=1$P then f := (f exquo p)::P if ground? f then return makeFR(f, result1) lvar:=variables(f) #lvar=1 => --- the polynomial is univariate --- result:=univcase(f,lvar.first) makeFR(unit result,append(result1,factorList result)) ldeg:=degree(f,lvar) --- general case --- m:="min"/[j for j in ldeg|j^=0] i:Z:=1 for j in ldeg while j>m repeat i:=i+1 x:=lvar.i lvar:=delete(lvar,i) f0:=univariate (f,x) lcont:P:= content f0 nsqfftot:=nsqfree((f0 exquo lcont)::SUP,lvar,empty()) nsqff:List ffP:=[["sqfr",multivariate(fu.factor,x),fu.exponent]$ffP for fu in nsqfftot.suPart] result1:=append(result1,nsqff) ground? lcont => makeFR(lcont*nsqfftot.unitPart,result1) sqlead:=squareFree(lcont) makeFR(unit sqlead*nsqfftot.unitPart,append(result1,factorList sqlead)) -- Choose the integer for the evaluation. -- -- If the polynomial is square-free the function returns upol=1. -- intChoose(f:SUP,lvar:List(OV),ltry:List List R):Choice == degf:= degree f try:NNI:=0 nvr:=#lvar range:Z:=10 lfact1:List(FFE):=[] lval1:List R := [] lfact:List(FFE) ctf1:R:=1 f1:BP:=1$BP d1:Z while range<10000000000 repeat range:=2*range lval:= [ran(range) for i in 1..nvr] member?(lval,ltry) => "new integer" ltry:=cons(lval,ltry) f0:=completeEval(f,lvar,lval) degree f0 ^=degf => "new integer" ctf:=content f0 lfact:List(FFE):=factors(squareFree((f0 exquo (ctf:R)::BP)::BP)) ---- the univariate polynomial is square-free ---- if #lfact=1 and (lfact.1).exponent=1 then return [1$BP,lval,lfact,1$R]$Choice d0:=compdegd lfact ---- inizialize lfact1 ---- try=0 => f1:=f0 lfact1:=lfact ctf1:=ctf lval1:=lval d1:=d0 try:=1 d0=d1 => return [f1,lval1,lfact1,ctf1]$Choice d0 < d1 => try:=1 f1:=f0 lfact1:=lfact ctf1:=ctf lval1:=lval d1:=d0 ---- Choose the leading coefficient for the lifting ---- coefChoose(exp:Z,sqlead:Factored(P)) : P == lcoef:P:=unit(sqlead) for term in factors(sqlead) repeat texp:=term.exponent texp<exp => "next term" texp=exp => lcoef:=lcoef*term.factor lcoef:=lcoef*(term.factor)**((texp quo exp)::NNI) lcoef ---- Construction of the polynomials for the lifting ---- consnewpol(g:SUP,g0:BP,deg:Z):Twopol == deg=1 => [g,g0]$Twopol deg:=deg-1 [normalDeriv(g,deg),normDeriv2(g0,deg)]$Twopol ---- lift the univariate square-free factor ---- lift(ud:SUP,g0:BP,g1:BP,lcoef:P,lvar:List(OV), ldeg:List(NNI),lval:List(R)) : Union(List SUP,"failed") == leadpol:Boolean:=false lcd:P:=leadingCoefficient ud leadlist:List(P):=empty() if ^ground?(leadingCoefficient ud) then leadpol:=true ud:=lcoef*ud lcg0:R:=leadingCoefficient g0 if ground? lcoef then g0:=retract(lcoef) quo lcg0 *g0 else g0:=(retract(eval(lcoef,lvar,lval)) quo lcg0) * g0 g1:=lcg0*g1 leadlist:=[lcoef,lcd] plist:=lifting(ud,lvar,[g0,g1],lval,leadlist,ldeg,pmod) plist case "failed" => "failed" (p0:SUP,p1:SUP):=((plist::List SUP).1,(plist::List SUP).2) if completeEval(p0,lvar,lval) ^= g0 then (p0,p1):=(p1,p0) [primitivePart p0,primitivePart p1] ---- the polynomial is univariate ---- univcase(f:P,x:OV) : Factored(P) == uf := univariate f cf:=content uf uf :=(uf exquo cf)::BP result:Factored BP:=squareFree uf makeFR(multivariate(cf*unit result,x), [["sqfr",multivariate(term.factor,x),term.exponent] for term in factors result]) -- squareFreePrim(p:P) : Factored P == -- -- p is content free -- ground? p => makeFR(p,[]) --- the polynomial is constant --- -- -- lvar:List(OV):=variables p -- #lvar=1 => --- the polynomial is univariate --- -- univcase(p,lvar.first) -- nsqfree(p,lvar,1) compdegd(lfact:List(FFE)) : Z == ris:Z:=0 for pfact in lfact repeat ris:=ris+(pfact.exponent -1)*degree pfact.factor ris normDeriv2(f:BP,m:Z) : BP == (n1:Z:=degree f) < m => 0$BP n1=m => (leadingCoefficient f)::BP k:=binomial(n1,m) ris:BP:=0$BP n:Z:=n1 while n>= m repeat while n1>n repeat k:=(k*(n1-m)) quo n1 n1:=n1-1 ris:=ris+monomial(k*leadingCoefficient f,(n-m)::NNI) f:=reductum f n:=degree f ris myDegree(f:SUP,lvar:List OV,exp:NNI) : List NNI== [n quo exp for n in degree(f,lvar)] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package MULTSQFR MultivariateSquareFree>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}