\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra multfact.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package INNMFACT InnerMultFact} <<package INNMFACT InnerMultFact>>= )abbrev package INNMFACT InnerMultFact ++ Author: P. Gianni ++ Date Created: 1983 ++ Date Last Updated: Sept. 1990 ++ Additional Comments: JHD Aug 1997 ++ Basic Functions: ++ Related Constructors: MultivariateFactorize, AlgebraicMultFact ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is an inner package for factoring multivariate polynomials ++ over various coefficient domains in characteristic 0. ++ The univariate factor operation is passed as a parameter. ++ Multivariate hensel lifting is used to lift the univariate ++ factorization -- Both exposed functions call mFactor. This deals with issues such as -- monomial factors, contents, square-freeness etc., then calls intfact. -- This uses intChoose to find a "good" evaluation and factorise the -- corresponding univariate, and then uses MultivariateLifting to find -- the multivariate factors. InnerMultFact(OV,E,R,P) : C == T where R : Join(EuclideanDomain, CharacteristicZero) -- with factor on R[x] OV : OrderedSet E : OrderedAbelianMonoidSup P : PolynomialCategory(R,E,OV) BP ==> SparseUnivariatePolynomial R UFactor ==> (BP -> Factored BP) Z ==> Integer MParFact ==> Record(irr:P,pow:Z) USP ==> SparseUnivariatePolynomial P SUParFact ==> Record(irr:USP,pow:Z) SUPFinalFact ==> Record(contp:R,factors:List SUParFact) MFinalFact ==> Record(contp:R,factors:List MParFact) -- contp = content, -- factors = List of irreducible factors with exponent L ==> List C == with factor : (P,UFactor) -> Factored P ++ factor(p,ufact) factors the multivariate polynomial p ++ by specializing variables and calling the univariate ++ factorizer ufact. factor : (USP,UFactor) -> Factored USP ++ factor(p,ufact) factors the multivariate polynomial p ++ by specializing variables and calling the univariate ++ factorizer ufact. p is represented as a univariate ++ polynomial with multivariate coefficients. T == add NNI ==> NonNegativeInteger LeadFact ==> Record(polfac:L P,correct:R,corrfact:L BP) ContPrim ==> Record(cont:P,prim:P) ParFact ==> Record(irr:BP,pow:Z) FinalFact ==> Record(contp:R,factors:L ParFact) NewOrd ==> Record(npol:USP,nvar:L OV,newdeg:L NNI) pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R import GenExEuclid(R,BP) import MultivariateLifting(E,OV,R,P) import FactoringUtilities(E,OV,R,P) import LeadingCoefDetermination(OV,E,R,P) Valuf ==> Record(inval:L L R,unvfact:L BP,lu:R,complead:L R) UPCF2 ==> UnivariatePolynomialCategoryFunctions2 ---- Local Functions ---- mFactor : (P,UFactor) -> MFinalFact supFactor : (USP,UFactor) -> SUPFinalFact mfconst : (USP,L OV,L NNI,UFactor) -> L USP mfpol : (USP,L OV,L NNI,UFactor) -> L USP monicMfpol: (USP,L OV,L NNI,UFactor) -> L USP varChoose : (P,L OV,L NNI) -> NewOrd simplify : (P,L OV,L NNI,UFactor) -> MFinalFact intChoose : (USP,L OV,R,L P,L L R,UFactor) -> Union(Valuf,"failed") intfact : (USP,L OV,L NNI,MFinalFact,L L R,UFactor) -> L USP pretest : (P,NNI,L OV,L R) -> FinalFact checkzero : (USP,BP) -> Boolean localNorm : L BP -> Z convertPUP(lfg:MFinalFact): SUPFinalFact == [lfg.contp,[[lff.irr ::USP,lff.pow]$SUParFact for lff in lfg.factors]]$SUPFinalFact -- intermediate routine if an SUP was passed in. supFactor(um:USP,ufactor:UFactor) : SUPFinalFact == ground?(um) => convertPUP(mFactor(ground um,ufactor)) lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um] empty? lvar => -- the polynomial is univariate umv:= map(ground,um)$UPCF2(P,USP,R,BP) lfact:=ufactor umv [retract unit lfact,[[map(coerce,ff.factor)$UPCF2(R,BP,P,USP), ff.exponent] for ff in factors lfact]]$SUPFinalFact lcont:P lf:L USP flead : SUPFinalFact:=[0,empty()]$SUPFinalFact factorlist:L SUParFact :=empty() mdeg :=minimumDegree um ---- is the Mindeg > 0? ---- if positive? mdeg then f1:USP:=monomial(1,mdeg) um:=(um exquo f1)::USP factorlist:=cons([monomial(1,1),mdeg],factorlist) if degree um=0 then return lfg:=convertPUP mFactor(ground um, ufactor) [lfg.contp,append(factorlist,lfg.factors)] uum:=unitNormal um um :=uum.canonical sqfacs := squareFree(um)$MultivariateSquareFree(E,OV,R,P) lcont := ground(uum.unit * unit sqfacs) ---- Factorize the content ---- flead:=convertPUP mFactor(lcont,ufactor) factorlist:=append(flead.factors,factorlist) ---- Make the polynomial square-free ---- sqqfact:=factors sqfacs --- Factorize the primitive square-free terms --- for fact in sqqfact repeat ffactor:USP:=fact.factor ffexp:=fact.exponent zero? degree ffactor => lfg:=mFactor(ground ffactor,ufactor) lcont:=lfg.contp * lcont factorlist := append(factorlist, [[lff.irr ::USP,lff.pow * ffexp]$SUParFact for lff in lfg.factors]) coefs := coefficients ffactor ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar] lf := ground?(leadingCoefficient ffactor) => mfconst(ffactor,lvar,ldeg,ufactor) mfpol(ffactor,lvar,ldeg,ufactor) auxfl:=[[lfp,ffexp]$SUParFact for lfp in lf] factorlist:=append(factorlist,auxfl) lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist] [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R, factorlist]$SUPFinalFact factor(um:USP,ufactor:UFactor):Factored USP == flist := supFactor(um,ufactor) (flist.contp):: P :: USP * (*/[primeFactor(u.irr,u.pow) for u in flist.factors]) checkzero(u:USP,um:BP) : Boolean == u=0 => um =0 um = 0 => false degree u = degree um => checkzero(reductum u, reductum um) false --- Choose the variable of less degree --- varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd == k:="min"/[d for d in ldeg] k=degree(m,first lvar) => [univariate(m,first lvar),lvar,ldeg]$NewOrd i:=position(k,ldeg) x:OV:=lvar.i ldeg:=cons(k,delete(ldeg,i)) lvar:=cons(x,delete(lvar,i)) [univariate(m,x),lvar,ldeg]$NewOrd localNorm(lum: L BP): Z == R is AlgebraicNumber => "max"/[numberOfMonomials ff for ff in lum] "max"/[+/[euclideanSize cc for i in 0..degree ff| not zero? (cc:= coefficient(ff,i))] for ff in lum] --- Choose the integer to reduce to univariate case --- intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R, ufactor:UFactor) : Union(Valuf,"failed") == -- declarations degum:NNI := degree um nvar1:=#lvar range:NNI:=5 unifact:L BP ctf1 : R := 1 testp:Boolean := -- polynomial leading coefficient empty? plist => false true leadcomp,leadcomp1 : L R leadcomp:=leadcomp1:=empty() nfatt:NNI := degum+1 lffc:R:=1 lffc1:=lffc newunifact : L BP:=empty() leadtest:=true --- the lc test with polCase has to be performed int:L R:=empty() -- New sets of integers are chosen to reduce the multivariate problem to -- a univariate one, until we find twice the -- same (and minimal) number of "univariate" factors: -- the set smaller in modulo is chosen. -- Note that there is no guarantee that this is the truth: -- merely the closest approximation we have found! while true repeat testp and #ltry>10 => return "failed" lval := [ ran(range) for i in 1..nvar1] member?(lval,ltry) => range:=2*range ltry := cons(lval,ltry) leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist] testp and or/[unit? epl for epl in leadcomp1] => range:=2*range newm:BP:=completeEval(um,lvar,lval) degum ~= degree newm or not zero? minimumDegree newm => range:=2*range lffc1:=content newm newm:=(newm exquo lffc1)::BP testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1) => range:=2*range not zero? degree(gcd [newm,differentiate(newm)]) => range:=2*range luniv:=ufactor(newm) lunivf:= factors luniv lffc1:R:=retract(unit luniv)@R * lffc1 nf:= #lunivf nf=0 or nf>nfatt => "next values" --- pretest failed --- --- the univariate polynomial is irreducible --- if nf=1 then leave (unifact:=[newm]) -- the new integer give the same number of factors nfatt = nf => -- if this is the first univariate factorization with polCase=true -- or if the last factorization has smaller norm and satisfies -- polCase if leadtest or ((localNorm unifact > localNorm [ff.factor for ff in lunivf]) and (not testp or polCase(lffc1*clc,#plist,leadcomp1))) then unifact:=[uf.factor for uf in lunivf] int:=lval lffc:=lffc1 if testp then leadcomp:=leadcomp1 leave "foundit" -- the first univariate factorization, inizialize nfatt > degum => unifact:=[uf.factor for uf in lunivf] lffc:=lffc1 if testp then leadcomp:=leadcomp1 int:=lval leadtest := false nfatt := nf nfatt>nf => -- for the previous values there were more factors if testp then leadtest:= not polCase(lffc*clc,#plist,leadcomp) else leadtest:= false -- if polCase=true we can consider the univariate decomposition if not leadtest then unifact:=[uf.factor for uf in lunivf] lffc:=lffc1 if testp then leadcomp:=leadcomp1 int:=lval nfatt := nf [cons(int,ltry),unifact,lffc,leadcomp]$Valuf ---- The polynomial has mindeg>0 ---- simplify(m:P,lvar:L OV,lmdeg:L NNI,ufactor:UFactor):MFinalFact == factorlist:L MParFact:=[] pol1:P:= 1$P for x in lvar repeat i := lmdeg.(position(x,lvar)) i=0 => "next value" pol1:=pol1*monomial(1$P,x,i) factorlist:=cons([x::P,i]$MParFact,factorlist) m := (m exquo pol1)::P ground? m => [retract m,factorlist]$MFinalFact flead:=mFactor(m,ufactor) flead.factors:=append(factorlist,flead.factors) flead -- This is the key internal function -- We now know that the polynomial is square-free etc., -- We use intChoose to find a set of integer values to reduce the -- problem to univariate (and for efficiency, intChoose returns -- the univariate factors). -- In the case of a polynomial leading coefficient, we check that this -- is consistent with leading coefficient determination (else try again) -- We then lift the univariate factors to multivariate factors, and -- return the result intfact(um:USP,lvar: L OV,ldeg:L NNI,tleadpol:MFinalFact, ltry:L L R,ufactor:UFactor) : L USP == polcase:Boolean:=(not empty? tleadpol.factors) vfchoo:Valuf:= polcase => leadpol:L P:=[ff.irr for ff in tleadpol.factors] check:=intChoose(um,lvar,tleadpol.contp,leadpol,ltry,ufactor) check case "failed" => return monicMfpol(um,lvar,ldeg,ufactor) check::Valuf intChoose(um,lvar,1,empty(),empty(),ufactor)::Valuf unifact:List BP := vfchoo.unvfact nfact:NNI := #unifact nfact=1 => [um] ltry:L L R:= vfchoo.inval lval:L R:=first ltry dd:= vfchoo.lu leadval:L R:=empty() lpol:List P:=empty() if polcase then leadval := vfchoo.complead distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval) distf case "failed" => return intfact(um,lvar,ldeg,tleadpol,ltry,ufactor) dist := distf :: LeadFact -- check the factorization of leading coefficient lpol:= dist.polfac dd := dist.correct unifact:=dist.corrfact if not one? dd then -- if polcase then lpol := [unitCanonical lp for lp in lpol] -- dd:=unitCanonical(dd) unifact := [dd * unif for unif in unifact] umd := unitNormal(dd).unit * ((dd**(nfact-1)::NNI)::P)*um else umd := um (ffin:=lifting(umd,lvar,unifact,lval,lpol,ldeg,pmod)) case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry,ufactor) factfin: L USP:=ffin :: L USP if not one? dd then factfin:=[primitivePart ff for ff in factfin] factfin ---- m square-free,primitive,lc constant ---- mfconst(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == factfin:L USP:=empty() empty? lvar => lum:=factors ufactor(map(ground,um)$UPCF2(P,USP,R,BP)) [map(coerce,uf.factor)$UPCF2(R,BP,P,USP) for uf in lum] intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty(),ufactor) monicize(um:USP,c:P):USP == n:=degree(um) ans:USP := monomial(1,n) n:=(n-1)::NonNegativeInteger prod:P:=1 while (um:=reductum(um)) ~= 0 repeat i := degree um lc := leadingCoefficient um prod := prod * c ** (n-(n:=i))::NonNegativeInteger ans := ans + monomial(prod*lc, i) ans unmonicize(m:USP,c:P):USP == primitivePart m(monomial(c,1)) --- m is square-free,primitive,lc is a polynomial --- monicMfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == l := leadingCoefficient um monpol := monicize(um,l) nldeg := degree(monpol,lvar) map(unmonicize(#1,l), mfconst(monpol,lvar,nldeg,ufactor)) mfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == R has Field => monicMfpol(um,lvar,ldeg,ufactor) tleadpol:=mFactor(leadingCoefficient um,ufactor) intfact(um,lvar,ldeg,tleadpol,[],ufactor) mFactor(m:P,ufactor:UFactor) : MFinalFact == ground?(m) => [retract(m),empty()]$MFinalFact lvar:L OV:= variables m lcont:P lf:L USP flead : MFinalFact:=[0,empty()]$MFinalFact factorlist:L MParFact :=empty() lmdeg :=minimumDegree(m,lvar) ---- is the Mindeg > 0? ---- or/[positive? n for n in lmdeg] => simplify(m,lvar,lmdeg,ufactor) sqfacs := squareFree m lcont := unit sqfacs ---- Factorize the content ---- if ground? lcont then flead.contp:=retract lcont else flead:=mFactor(lcont,ufactor) factorlist:=flead.factors ---- Make the polynomial square-free ---- sqqfact:=factors sqfacs --- Factorize the primitive square-free terms --- for fact in sqqfact repeat ffactor:P:=fact.factor ffexp := fact.exponent lvar := variables ffactor x:OV :=lvar.first ldeg:=degree(ffactor,lvar) --- Is the polynomial linear in one of the variables ? --- member?(1,ldeg) => x:OV:=lvar.position(1,ldeg) lcont:= gcd coefficients(univariate(ffactor,x)) ffactor:=(ffactor exquo lcont)::P factorlist:=cons([ffactor,ffexp]$MParFact,factorlist) for lcterm in mFactor(lcont,ufactor).factors repeat factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist) varch:=varChoose(ffactor,lvar,ldeg) um:=varch.npol x:=lvar.first ldeg:=ldeg.rest lvar := lvar.rest if varch.nvar.first ~= x then lvar:= varch.nvar x := lvar.first lvar := lvar.rest pc:= gcd coefficients um if not one? pc then um:=(um exquo pc)::USP ffactor:=multivariate(um,x) for lcterm in mFactor(pc,ufactor).factors repeat factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist) ldeg:=degree(ffactor,lvar) um := unitCanonical um if ground?(leadingCoefficient um) then lf:= mfconst(um,lvar,ldeg,ufactor) else lf:=mfpol(um,lvar,ldeg,ufactor) auxfl:=[[unitCanonical multivariate(lfp,x),ffexp]$MParFact for lfp in lf] factorlist:=append(factorlist,auxfl) lcfacs := */[leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist] [(leadingCoefficient(m) exquo lcfacs):: R,factorlist]$MFinalFact factor(m:P,ufactor:UFactor):Factored P == flist := mFactor(m,ufactor) (flist.contp):: P * (*/[primeFactor(u.irr,u.pow) for u in flist.factors]) @ \section{package MULTFACT MultivariateFactorize} <<package MULTFACT MultivariateFactorize>>= )abbrev package MULTFACT MultivariateFactorize ++ Author: P. Gianni ++ Date Created: 1983 ++ Date Last Updated: Sept. 1990 ++ Basic Functions: ++ Related Constructors: MultFiniteFactorize, AlgebraicMultFact, UnivariateFactorize ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This is the top level package for doing multivariate factorization ++ over basic domains like \spadtype{Integer} or \spadtype{Fraction Integer}. MultivariateFactorize(OV,E,R,P) : C == T where R : Join(EuclideanDomain, CharacteristicZero) -- with factor on R[x] OV : OrderedSet E : OrderedAbelianMonoidSup P : PolynomialCategory(R,E,OV) Z ==> Integer MParFact ==> Record(irr:P,pow:Z) USP ==> SparseUnivariatePolynomial P SUParFact ==> Record(irr:USP,pow:Z) SUPFinalFact ==> Record(contp:R,factors:List SUParFact) MFinalFact ==> Record(contp:R,factors:List MParFact) -- contp = content, -- factors = List of irreducible factors with exponent L ==> List C == with factor : P -> Factored P ++ factor(p) factors the multivariate polynomial p over its coefficient ++ domain factor : USP -> Factored USP ++ factor(p) factors the multivariate polynomial p over its coefficient ++ domain where p is represented as a univariate polynomial with ++ multivariate coefficients T == add factor(p:P) : Factored P == R is Fraction Integer => factor(p)$MRationalFactorize(E,OV,Integer,P) R is Fraction Complex Integer => factor(p)$MRationalFactorize(E,OV,Complex Integer,P) R is Fraction Polynomial Integer and OV has convert: % -> Symbol => factor(p)$MPolyCatRationalFunctionFactorizer(E,OV,Integer,P) factor(p,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P) factor(up:USP) : Factored USP == factor(up,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P) @ \section{package ALGMFACT AlgebraicMultFact} <<package ALGMFACT AlgebraicMultFact>>= )abbrev package ALGMFACT AlgebraicMultFact ++ Author: P. Gianni ++ Date Created: 1990 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package factors multivariate polynomials over the ++ domain of \spadtype{AlgebraicNumber} by allowing the user ++ to specify a list of algebraic numbers generating the particular ++ extension to factor over. AlgebraicMultFact(OV,E,P) : C == T where AN ==> AlgebraicNumber OV : OrderedSet E : OrderedAbelianMonoidSup P : PolynomialCategory(AN,E,OV) BP ==> SparseUnivariatePolynomial AN Z ==> Integer MParFact ==> Record(irr:P,pow:Z) USP ==> SparseUnivariatePolynomial P SUParFact ==> Record(irr:USP,pow:Z) SUPFinalFact ==> Record(contp:R,factors:List SUParFact) MFinalFact ==> Record(contp:R,factors:List MParFact) -- contp = content, -- factors = List of irreducible factors with exponent L ==> List C == with factor : (P,L AN) -> Factored P ++ factor(p,lan) factors the polynomial p over the extension ++ generated by the algebraic numbers given by the list lan. factor : (USP,L AN) -> Factored USP ++ factor(p,lan) factors the polynomial p over the extension ++ generated by the algebraic numbers given by the list lan. ++ p is presented as a univariate polynomial with multivariate ++ coefficients. T == add AF := AlgFactor(BP) factor(p:P,lalg:L AN) : Factored P == factor(p,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P) factor(up:USP,lalg:L AN) : Factored USP == factor(up,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package INNMFACT InnerMultFact>> <<package MULTFACT MultivariateFactorize>> <<package ALGMFACT AlgebraicMultFact>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}