\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra multfact.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INNMFACT InnerMultFact}
<<package INNMFACT InnerMultFact>>=
)abbrev package INNMFACT InnerMultFact
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Additional Comments: JHD Aug 1997
++ Basic Functions:
++ Related Constructors: MultivariateFactorize, AlgebraicMultFact
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This is an inner package for factoring multivariate polynomials
++ over various coefficient domains in characteristic 0.
++ The univariate factor operation is passed as a parameter.
++ Multivariate hensel lifting is used to lift the univariate
++ factorization

-- Both exposed functions call mFactor. This deals with issues such as 
-- monomial factors, contents, square-freeness etc., then calls intfact.
-- This uses intChoose to find a "good" evaluation and factorise the 
-- corresponding univariate, and then uses MultivariateLifting to find
-- the multivariate factors.

InnerMultFact(OV,E,R,P) : C == T
 where
  R          :   Join(EuclideanDomain, CharacteristicZero)
                      -- with factor on R[x]
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(R,E,OV)
  BP         ==> SparseUnivariatePolynomial R
  UFactor    ==> (BP -> Factored BP)
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)

               --  contp   =  content,
               --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :      (P,UFactor)    ->  Factored P
      ++ factor(p,ufact) factors the multivariate polynomial p
      ++ by specializing variables and calling the univariate
      ++ factorizer ufact.
    factor      :      (USP,UFactor)    ->  Factored USP
      ++ factor(p,ufact) factors the multivariate polynomial p
      ++ by specializing variables and calling the univariate
      ++ factorizer ufact. p is represented as a univariate
      ++ polynomial with multivariate coefficients.

  T == add

    NNI       ==> NonNegativeInteger

    LeadFact  ==> Record(polfac:L P,correct:R,corrfact:L BP)
    ContPrim  ==> Record(cont:P,prim:P)
    ParFact   ==> Record(irr:BP,pow:Z)
    FinalFact ==> Record(contp:R,factors:L ParFact)
    NewOrd    ==> Record(npol:USP,nvar:L OV,newdeg:L NNI)
    pmod:R   :=  (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R

    import GenExEuclid(R,BP)
    import MultivariateLifting(E,OV,R,P)
    import FactoringUtilities(E,OV,R,P)
    import LeadingCoefDetermination(OV,E,R,P)
    Valuf ==> Record(inval:L L R,unvfact:L BP,lu:R,complead:L R)
    UPCF2 ==> UnivariatePolynomialCategoryFunctions2

                   ----  Local Functions  ----
    mFactor   :            (P,UFactor)           ->  MFinalFact
    supFactor :           (USP,UFactor)          ->  SUPFinalFact
    mfconst   :      (USP,L OV,L NNI,UFactor)    -> L USP
    mfpol     :      (USP,L OV,L NNI,UFactor)    -> L USP
    monicMfpol:      (USP,L OV,L NNI,UFactor)    -> L USP
    varChoose :           (P,L OV,L NNI)         -> NewOrd
    simplify  :       (P,L OV,L NNI,UFactor)     -> MFinalFact
    intChoose :  (USP,L OV,R,L P,L L R,UFactor)  -> Union(Valuf,"failed")
    intfact   : (USP,L OV,L NNI,MFinalFact,L L R,UFactor) -> L USP
    pretest   :         (P,NNI,L OV,L R)         -> FinalFact
    checkzero :            (USP,BP)              -> Boolean
    localNorm :               L BP               -> Z

    convertPUP(lfg:MFinalFact): SUPFinalFact ==
      [lfg.contp,[[lff.irr ::USP,lff.pow]$SUParFact
                    for lff in lfg.factors]]$SUPFinalFact

    -- intermediate routine if an SUP was passed in.
    supFactor(um:USP,ufactor:UFactor) : SUPFinalFact ==
      ground?(um) => convertPUP(mFactor(ground um,ufactor))
      lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um]
      empty? lvar => -- the polynomial is univariate
        umv:= map(ground,um)$UPCF2(P,USP,R,BP)
        lfact:=ufactor umv
        [retract unit lfact,[[map(coerce,ff.factor)$UPCF2(R,BP,P,USP),
           ff.exponent] for ff in factors lfact]]$SUPFinalFact
      lcont:P
      lf:L USP
      flead : SUPFinalFact:=[0,empty()]$SUPFinalFact
      factorlist:L SUParFact :=empty()

      mdeg :=minimumDegree um     ---- is the Mindeg > 0? ----
      if mdeg>0 then
        f1:USP:=monomial(1,mdeg)
        um:=(um exquo f1)::USP
        factorlist:=cons([monomial(1,1),mdeg],factorlist)
        if degree um=0 then return
          lfg:=convertPUP mFactor(ground um, ufactor)
          [lfg.contp,append(factorlist,lfg.factors)]
      uum:=unitNormal um
      um :=uum.canonical
      sqfacs := squareFree(um)$MultivariateSquareFree(E,OV,R,P)
      lcont :=  ground(uum.unit * unit sqfacs)
                                   ----  Factorize the content  ----
      flead:=convertPUP mFactor(lcont,ufactor)
      factorlist:=append(flead.factors,factorlist)
                               ----  Make the polynomial square-free  ----
      sqqfact:=factors sqfacs
                        ---  Factorize the primitive square-free terms ---
      for fact in sqqfact repeat
        ffactor:USP:=fact.factor
        ffexp:=fact.exponent
        zero? degree ffactor =>
          lfg:=mFactor(ground ffactor,ufactor)
          lcont:=lfg.contp * lcont
          factorlist := append(factorlist,
             [[lff.irr ::USP,lff.pow * ffexp]$SUParFact
                       for lff in lfg.factors])
        coefs := coefficients ffactor
        ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar]
        lf :=
          ground?(leadingCoefficient ffactor) =>
             mfconst(ffactor,lvar,ldeg,ufactor)
          mfpol(ffactor,lvar,ldeg,ufactor)
        auxfl:=[[lfp,ffexp]$SUParFact  for lfp in lf]
        factorlist:=append(factorlist,auxfl)
      lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI)
                           for f in factorlist]
      [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R,
                     factorlist]$SUPFinalFact

    factor(um:USP,ufactor:UFactor):Factored USP ==
      flist := supFactor(um,ufactor)
      (flist.contp):: P :: USP *
        (*/[primeFactor(u.irr,u.pow) for u in flist.factors])

    checkzero(u:USP,um:BP) : Boolean ==
      u=0 => um =0
      um = 0 => false
      degree u = degree um => checkzero(reductum u, reductum um)
      false
              ---  Choose the variable of less degree  ---
    varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd ==
      k:="min"/[d for d in ldeg]
      k=degree(m,first lvar) =>
                             [univariate(m,first lvar),lvar,ldeg]$NewOrd
      i:=position(k,ldeg)
      x:OV:=lvar.i
      ldeg:=cons(k,delete(ldeg,i))
      lvar:=cons(x,delete(lvar,i))
      [univariate(m,x),lvar,ldeg]$NewOrd

    localNorm(lum: L BP): Z ==
      R is AlgebraicNumber =>
        "max"/[numberOfMonomials ff for ff in lum]

      "max"/[+/[euclideanSize cc for i in 0..degree ff|
                (cc:= coefficient(ff,i))~=0] for ff in lum]

          ---  Choose the integer to reduce to univariate case  ---
    intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R,
                                 ufactor:UFactor) : Union(Valuf,"failed") ==
      -- declarations
      degum:NNI := degree um
      nvar1:=#lvar
      range:NNI:=5
      unifact:L BP
      ctf1 : R := 1
      testp:Boolean :=             -- polynomial leading coefficient
        empty? plist => false
        true
      leadcomp,leadcomp1 : L R
      leadcomp:=leadcomp1:=empty()
      nfatt:NNI := degum+1
      lffc:R:=1
      lffc1:=lffc
      newunifact : L BP:=empty()
      leadtest:=true --- the lc test with polCase has to be performed
      int:L R:=empty()

   --  New sets of integers are chosen to reduce the multivariate problem to
   --  a univariate one, until we find twice the
   --  same (and minimal) number of "univariate" factors:
   --  the set smaller in modulo is chosen.
   --  Note that there is no guarantee that this is the truth:
   --  merely the closest approximation we have found!

      while true repeat
       testp and #ltry>10 => return "failed"
       lval := [ ran(range) for i in 1..nvar1]
       member?(lval,ltry) => range:=2*range
       ltry := cons(lval,ltry)
       leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
       testp and or/[unit? epl for epl in leadcomp1] => range:=2*range
       newm:BP:=completeEval(um,lvar,lval)
       degum ~= degree newm or minimumDegree newm ~=0 => range:=2*range
       lffc1:=content newm
       newm:=(newm exquo lffc1)::BP
       testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
                             => range:=2*range
       degree(gcd [newm,differentiate(newm)])~=0 => range:=2*range
       luniv:=ufactor(newm)
       lunivf:= factors luniv
       lffc1:R:=retract(unit luniv)@R * lffc1
       nf:= #lunivf

       nf=0 or nf>nfatt => "next values"      ---  pretest failed ---

                        --- the univariate polynomial is irreducible ---
       if nf=1 then leave (unifact:=[newm])

   --  the new integer give the same number of factors
       nfatt = nf =>
       -- if this is the first univariate factorization with polCase=true
       -- or if the last factorization has smaller norm and satisfies
       -- polCase
         if leadtest or
           ((localNorm unifact > localNorm [ff.factor for ff in lunivf])
             and (not testp or polCase(lffc1*clc,#plist,leadcomp1))) then
                unifact:=[uf.factor for uf in lunivf]
                int:=lval
                lffc:=lffc1
                if testp then leadcomp:=leadcomp1
         leave "foundit"

   --  the first univariate factorization, inizialize
       nfatt > degum =>
         unifact:=[uf.factor for uf in lunivf]
         lffc:=lffc1
         if testp then leadcomp:=leadcomp1
         int:=lval
         leadtest := false
         nfatt := nf

       nfatt>nf =>  -- for the previous values there were more factors
         if testp then leadtest:= not polCase(lffc*clc,#plist,leadcomp)
         else leadtest:= false
         -- if polCase=true we can consider the univariate decomposition
         if not leadtest then
           unifact:=[uf.factor for uf in lunivf]
           lffc:=lffc1
           if testp then leadcomp:=leadcomp1
           int:=lval
         nfatt := nf
      [cons(int,ltry),unifact,lffc,leadcomp]$Valuf


                ----  The polynomial has mindeg>0   ----

    simplify(m:P,lvar:L OV,lmdeg:L NNI,ufactor:UFactor):MFinalFact ==
      factorlist:L MParFact:=[]
      pol1:P:= 1$P
      for x in lvar repeat
        i := lmdeg.(position(x,lvar))
        i=0 => "next value"
        pol1:=pol1*monomial(1$P,x,i)
        factorlist:=cons([x::P,i]$MParFact,factorlist)
      m := (m exquo pol1)::P
      ground? m => [retract m,factorlist]$MFinalFact
      flead:=mFactor(m,ufactor)
      flead.factors:=append(factorlist,flead.factors)
      flead

    -- This is the key internal function
    -- We now know that the polynomial is square-free etc.,
    -- We use intChoose to find a set of integer values to reduce the
    -- problem to univariate (and for efficiency, intChoose returns
    -- the univariate factors).
    -- In the case of a polynomial leading coefficient, we check that this 
    -- is consistent with leading coefficient determination (else try again)
    -- We then lift the univariate factors to multivariate factors, and
    -- return the result
    intfact(um:USP,lvar: L OV,ldeg:L NNI,tleadpol:MFinalFact,
                                   ltry:L L R,ufactor:UFactor) :  L USP ==
      polcase:Boolean:=(not empty? tleadpol.factors)
      vfchoo:Valuf:=
        polcase =>
          leadpol:L P:=[ff.irr for ff in tleadpol.factors]
          check:=intChoose(um,lvar,tleadpol.contp,leadpol,ltry,ufactor)
          check case "failed" => return monicMfpol(um,lvar,ldeg,ufactor)
          check::Valuf
        intChoose(um,lvar,1,empty(),empty(),ufactor)::Valuf
      unifact:List BP := vfchoo.unvfact
      nfact:NNI := #unifact
      nfact=1 => [um]
      ltry:L L R:= vfchoo.inval
      lval:L R:=first ltry
      dd:= vfchoo.lu
      leadval:L R:=empty()
      lpol:List P:=empty()
      if polcase then
        leadval := vfchoo.complead
        distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval)
        distf case "failed" =>
             return intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
        dist := distf :: LeadFact
          -- check the factorization of leading coefficient
        lpol:= dist.polfac
        dd := dist.correct
        unifact:=dist.corrfact
      if dd~=1 then
--        if polcase then lpol := [unitCanonical lp for lp in lpol]
--        dd:=unitCanonical(dd)
        unifact := [dd * unif for unif in unifact]
        umd := unitNormal(dd).unit * ((dd**(nfact-1)::NNI)::P)*um
      else umd := um
      (ffin:=lifting(umd,lvar,unifact,lval,lpol,ldeg,pmod))
        case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
      factfin: L USP:=ffin :: L USP
      if dd~=1 then
        factfin:=[primitivePart ff for ff in factfin]
      factfin

                ----  m square-free,primitive,lc constant  ----
    mfconst(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      factfin:L USP:=empty()
      empty? lvar =>
        lum:=factors ufactor(map(ground,um)$UPCF2(P,USP,R,BP))
        [map(coerce,uf.factor)$UPCF2(R,BP,P,USP) for uf in lum]
      intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty(),ufactor)

    monicize(um:USP,c:P):USP ==
      n:=degree(um)
      ans:USP := monomial(1,n)
      n:=(n-1)::NonNegativeInteger
      prod:P:=1
      while (um:=reductum(um)) ~= 0 repeat
        i := degree um
        lc := leadingCoefficient um
        prod := prod * c ** (n-(n:=i))::NonNegativeInteger
        ans := ans + monomial(prod*lc, i)
      ans

    unmonicize(m:USP,c:P):USP == primitivePart m(monomial(c,1))

              --- m is square-free,primitive,lc is a polynomial  ---
    monicMfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      l := leadingCoefficient um
      monpol := monicize(um,l)
      nldeg := degree(monpol,lvar)
      map(unmonicize(#1,l),
                mfconst(monpol,lvar,nldeg,ufactor))

    mfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      R has Field =>
        monicMfpol(um,lvar,ldeg,ufactor)
      tleadpol:=mFactor(leadingCoefficient um,ufactor)
      intfact(um,lvar,ldeg,tleadpol,[],ufactor)

    mFactor(m:P,ufactor:UFactor) : MFinalFact ==
      ground?(m) => [retract(m),empty()]$MFinalFact
      lvar:L OV:= variables m
      lcont:P
      lf:L USP
      flead : MFinalFact:=[0,empty()]$MFinalFact
      factorlist:L MParFact :=empty()

      lmdeg :=minimumDegree(m,lvar)     ---- is the Mindeg > 0? ----
      or/[n>0 for n in lmdeg] => simplify(m,lvar,lmdeg,ufactor)

      sqfacs := squareFree m
      lcont := unit sqfacs

                                  ----  Factorize the content  ----
      if ground? lcont then flead.contp:=retract lcont
      else flead:=mFactor(lcont,ufactor)
      factorlist:=flead.factors



                              ----  Make the polynomial square-free  ----
      sqqfact:=factors sqfacs

                       ---  Factorize the primitive square-free terms ---
      for fact in sqqfact repeat
        ffactor:P:=fact.factor
        ffexp := fact.exponent
        lvar := variables ffactor
        x:OV :=lvar.first
        ldeg:=degree(ffactor,lvar)
             ---  Is the polynomial linear in one of the variables ? ---
        member?(1,ldeg) =>
          x:OV:=lvar.position(1,ldeg)
          lcont:= gcd coefficients(univariate(ffactor,x))
          ffactor:=(ffactor exquo lcont)::P
          factorlist:=cons([ffactor,ffexp]$MParFact,factorlist)
          for lcterm in mFactor(lcont,ufactor).factors repeat
           factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist)

        varch:=varChoose(ffactor,lvar,ldeg)
        um:=varch.npol

        x:=lvar.first
        ldeg:=ldeg.rest
        lvar := lvar.rest
        if varch.nvar.first ~= x then
          lvar:= varch.nvar
          x := lvar.first
          lvar := lvar.rest
        pc:= gcd coefficients um
        if pc~=1 then
            um:=(um exquo pc)::USP
            ffactor:=multivariate(um,x)
            for lcterm in mFactor(pc,ufactor).factors repeat
              factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist)
        ldeg:=degree(ffactor,lvar)
        um := unitCanonical um
        if ground?(leadingCoefficient um) then
           lf:= mfconst(um,lvar,ldeg,ufactor)
        else lf:=mfpol(um,lvar,ldeg,ufactor)
        auxfl:=[[unitCanonical multivariate(lfp,x),ffexp]$MParFact  for lfp in lf]
        factorlist:=append(factorlist,auxfl)
      lcfacs := */[leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist]
      [(leadingCoefficient(m) exquo lcfacs):: R,factorlist]$MFinalFact

    factor(m:P,ufactor:UFactor):Factored P ==
      flist := mFactor(m,ufactor)
      (flist.contp):: P *
        (*/[primeFactor(u.irr,u.pow) for u in flist.factors])

@
\section{package MULTFACT MultivariateFactorize}
<<package MULTFACT MultivariateFactorize>>=
)abbrev package MULTFACT MultivariateFactorize
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Basic Functions:
++ Related Constructors: MultFiniteFactorize, AlgebraicMultFact, UnivariateFactorize
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This is the top level package for doing multivariate factorization
++ over basic domains like \spadtype{Integer} or \spadtype{Fraction Integer}.

MultivariateFactorize(OV,E,R,P) : C == T
 where
  R          :   Join(EuclideanDomain, CharacteristicZero)
                    -- with factor on R[x]
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(R,E,OV)
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)
 
                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :      P  ->  Factored P
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain
    factor      :      USP  ->  Factored USP
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain where p is represented as a univariate polynomial with
      ++ multivariate coefficients
  T == add
    factor(p:P) : Factored P ==
      R is Fraction Integer =>
         factor(p)$MRationalFactorize(E,OV,Integer,P)
      R is Fraction Complex Integer =>
         factor(p)$MRationalFactorize(E,OV,Complex Integer,P)
      R is Fraction Polynomial Integer and OV has convert: % -> Symbol =>
         factor(p)$MPolyCatRationalFunctionFactorizer(E,OV,Integer,P)
      factor(p,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)

    factor(up:USP) : Factored USP ==
      factor(up,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)

@
\section{package ALGMFACT AlgebraicMultFact}
<<package ALGMFACT AlgebraicMultFact>>=
)abbrev package ALGMFACT AlgebraicMultFact
++ Author: P. Gianni
++ Date Created: 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package factors multivariate polynomials over the
++ domain of \spadtype{AlgebraicNumber} by allowing the user
++ to specify a list of algebraic numbers generating the particular
++ extension to factor over.

AlgebraicMultFact(OV,E,P) : C == T
 where
  AN         ==> AlgebraicNumber
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(AN,E,OV)
  BP         ==> SparseUnivariatePolynomial AN
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)

                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :   (P,L AN)  ->  Factored P
      ++ factor(p,lan) factors the polynomial p over the extension
      ++ generated by the algebraic numbers given by the list lan.
    factor      :   (USP,L AN)  ->  Factored USP
      ++ factor(p,lan) factors the polynomial p over the extension
      ++ generated by the algebraic numbers given by the list lan.
      ++ p is presented as a univariate polynomial with multivariate
      ++ coefficients.
  T == add
    AF := AlgFactor(BP)

    factor(p:P,lalg:L AN) : Factored P ==
      factor(p,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P)

    factor(up:USP,lalg:L AN) : Factored USP ==
      factor(up,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package INNMFACT InnerMultFact>>
<<package MULTFACT MultivariateFactorize>>
<<package ALGMFACT AlgebraicMultFact>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}