\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra mring.spad} \author{Stephen M. Watt, Johannes Grabmeier, Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain MRING MonoidRing} <<domain MRING MonoidRing>>= )abbrev domain MRING MonoidRing ++ Authors: Stephan M. Watt; revised by Johannes Grabmeier ++ Date Created: January 1986 ++ Date Last Updated: 14 December 1995, Mike Dewar ++ Basic Operations: *, +, monomials, coefficients ++ Related Constructors: Polynomial ++ Also See: ++ AMS Classifications: ++ Keywords: monoid ring, group ring, polynomials in non-commuting ++ indeterminates ++ References: ++ Description: ++ \spadtype{MonoidRing}(R,M), implements the algebra ++ of all maps from the monoid M to the commutative ring R with ++ finite support. ++ Multiplication of two maps f and g is defined ++ to map an element c of M to the (convolution) sum over {\em f(a)g(b)} ++ such that {\em ab = c}. Thus M can be identified with a canonical ++ basis and the maps can also be considered as formal linear combinations ++ of the elements in M. Scalar multiples of a basis element are called ++ monomials. A prominent example is the class of polynomials ++ where the monoid is a direct product of the natural numbers ++ with pointwise addition. When M is ++ \spadtype{FreeMonoid Symbol}, one gets polynomials ++ in infinitely many non-commuting variables. Another application ++ area is representation theory of finite groups G, where modules ++ over \spadtype{MonoidRing}(R,G) are studied. MonoidRing(R: Ring, M: Monoid): MRcategory == MRdefinition where Term ==> Record(coef: R, monom: M) MRcategory ==> Join(Ring, RetractableTo M, RetractableTo R) with monomial : (R, M) -> % ++ monomial(r,m) creates a scalar multiple of the basis element m. coefficient : (%, M) -> R ++ coefficient(f,m) extracts the coefficient of m in f with respect ++ to the canonical basis M. coerce: List Term -> % ++ coerce(lt) converts a list of terms and coefficients to a member of the domain. terms : % -> List Term ++ terms(f) gives the list of non-zero coefficients combined ++ with their corresponding basis element as records. ++ This is the internal representation. map : (R -> R, %) -> % ++ map(fn,u) maps function fn onto the coefficients ++ of the non-zero monomials of u. monomial? : % -> Boolean ++ monomial?(f) tests if f is a single monomial. coefficients: % -> List R ++ coefficients(f) lists all non-zero coefficients. monomials: % -> List % ++ monomials(f) gives the list of all monomials whose ++ sum is f. numberOfMonomials: % -> NonNegativeInteger ++ numberOfMonomials(f) is the number of non-zero coefficients ++ with respect to the canonical basis. if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has CommutativeRing then Algebra(R) if (R has Finite and M has Finite) then Finite if M has OrderedSet then leadingMonomial : % -> M ++ leadingMonomial(f) gives the monomial of f whose ++ corresponding monoid element is the greatest ++ among all those with non-zero coefficients. leadingCoefficient: % -> R ++ leadingCoefficient(f) gives the coefficient of f, whose ++ corresponding monoid element is the greatest ++ among all those with non-zero coefficients. reductum : % -> % ++ reductum(f) is f minus its leading monomial. MRdefinition ==> add Ex ==> OutputForm Cf ==> coef Mn ==> monom Rep := List Term coerce(x: List Term): % == x :: % monomial(r:R, m:M) == r = 0 => empty() [[r, m]] if (R has Finite and M has Finite) then size() == size()$R ** size()$M index k == -- use p-adic decomposition of k -- coefficient of p**j determines coefficient of index(i+p)$M i:Integer := k rem size() p:Integer := size()$R n:Integer := size()$M ans:% := 0 for j in 0.. while positive? i repeat h := i rem p -- we use index(p) = 0$R if h ~= 0 then c : R := index(h :: PositiveInteger)$R m : M := index((j+n) :: PositiveInteger)$M --ans := ans + c *$% m ans := ans + monomial(c, m)$% i := i quo p ans lookup(z : %) : PositiveInteger == -- could be improved, if M has OrderedSet -- z = index lookup z, n = lookup index n -- use p-adic decomposition of k -- coefficient of p**j determines coefficient of index(i+p)$M zero?(z) => size()$% pretend PositiveInteger liTe : List Term := terms z -- all non-zero coefficients p : Integer := size()$R n : Integer := size()$M res : Integer := 0 for te in liTe repeat -- assume that lookup(p)$R = 0 l:NonNegativeInteger:=lookup(te.Mn)$M ex : NonNegativeInteger := (n=l => 0;l) co : Integer := lookup(te.Cf)$R res := res + co * p ** ex res pretend PositiveInteger random() == index( (1+(random()$Integer rem size()$%) )_ pretend PositiveInteger)$% 0 == empty() 1 == [[1, 1]] terms a == (copy a) pretend List(Term) monomials a == [[t] for t in a] coefficients a == [t.Cf for t in a] coerce(m:M):% == [[1, m]] coerce(r:R): % == -- coerce of ring r = 0 => 0 [[r, 1]] coerce(n:Integer): % == -- coerce of integers n = 0 => 0 [[n::R, 1]] - a == [[ -t.Cf, t.Mn] for t in a] if R has noZeroDivisors then (r:R) * (a:%) == r = 0 => 0 [[r*t.Cf, t.Mn] for t in a] else (r:R) * (a:%) == r = 0 => 0 [[rt, t.Mn] for t in a | (rt:=r*t.Cf) ~= 0] if R has noZeroDivisors then (n:Integer) * (a:%) == n = 0 => 0 [[n*t.Cf, t.Mn] for t in a] else (n:Integer) * (a:%) == n = 0 => 0 [[nt, t.Mn] for t in a | (nt:=n*t.Cf) ~= 0] map(f, a) == [[ft, t.Mn] for t in a | (ft:=f(t.Cf)) ~= 0] numberOfMonomials a == #a retractIfCan(a:%):Union(M, "failed") == one?(#a) and one?(a.first.Cf) => a.first.Mn "failed" retractIfCan(a:%):Union(R, "failed") == one?(#a) and one?(a.first.Mn) => a.first.Cf "failed" if R has noZeroDivisors then if M has Group then recip a == lt := terms a not one?(#lt) => "failed" (u := recip lt.first.Cf) case "failed" => "failed" --(u::R) * inv lt.first.Mn monomial((u::R), inv lt.first.Mn)$% else recip a == not one?(#a) or not one?(a.first.Mn) => "failed" (u := recip a.first.Cf) case "failed" => "failed" u::R::% mkTerm(r:R, m:M):Ex == r=1 => m::Ex r=0 or m=1 => r::Ex r::Ex * m::Ex coerce(a:%):Ex == empty? a => (0$Integer)::Ex empty? rest a => mkTerm(a.first.Cf, a.first.Mn) reduce(_+, [mkTerm(t.Cf, t.Mn) for t in a])$List(Ex) if M has OrderedSet then -- we mean totally ordered -- Terms are stored in decending order. leadingCoefficient a == (empty? a => 0; a.first.Cf) leadingMonomial a == (empty? a => 1; a.first.Mn) reductum a == (empty? a => a; rest a) a = b == #a ~= #b => false for ta in a for tb in b repeat ta.Cf ~= tb.Cf or ta.Mn ~= tb.Mn => return false true a + b == c:% := empty() while not empty? a and not empty? b repeat ta := first a; tb := first b ra := rest a; rb := rest b c := ta.Mn > tb.Mn => (a := ra; concat!(c, ta)) ta.Mn < tb.Mn => (b := rb; concat!(c, tb)) a := ra; b := rb not zero?(r := ta.Cf+tb.Cf) => concat!(c, [r, ta.Mn]) c concat!(c, concat(a, b)) coefficient(a, m) == for t in a repeat if t.Mn = m then return t.Cf if t.Mn < m then return 0 0 if M has OrderedMonoid then -- we use that multiplying an ordered list of monoid elements -- by a single element respects the ordering if R has noZeroDivisors then a:% * b:% == +/[[[ta.Cf*tb.Cf, ta.Mn*tb.Mn]$Term for tb in b ] for ta in reverse a] else a:% * b:% == +/[[[r, ta.Mn*tb.Mn]$Term for tb in b | not zero?(r := ta.Cf*tb.Cf)] for ta in reverse a] else -- M hasn't OrderedMonoid -- we cannot assume that mutiplying an ordered list of -- monoid elements by a single element respects the ordering: -- we have to order and to collect equal terms ge : (Term,Term) -> Boolean ge(s,t) == t.Mn <= s.Mn sortAndAdd : List Term -> List Term sortAndAdd(liTe) == -- assume liTe not empty liTe := sort(ge,liTe) m : M := (first liTe).Mn cf : R := (first liTe).Cf res : List Term := [] for te in rest liTe repeat if m = te.Mn then cf := cf + te.Cf else if not zero? cf then res := cons([cf,m]$Term, res) m := te.Mn cf := te.Cf if not zero? cf then res := cons([cf,m]$Term, res) reverse res if R has noZeroDivisors then a:% * b:% == zero? a => a zero? b => b -- avoid calling sortAndAdd with [] +/[sortAndAdd [[ta.Cf*tb.Cf, ta.Mn*tb.Mn]$Term for tb in b ] for ta in reverse a] else a:% * b:% == zero? a => a zero? b => b -- avoid calling sortAndAdd with [] +/[sortAndAdd [[r, ta.Mn*tb.Mn]$Term for tb in b | not zero?(r := ta.Cf*tb.Cf)] for ta in reverse a] else -- M hasn't OrderedSet -- Terms are stored in random order. a = b == #a ~= #b => false brace(a pretend List(Term)) =$Set(Term) brace(b pretend List(Term)) coefficient(a, m) == for t in a repeat t.Mn = m => return t.Cf 0 addterm(Tabl: AssociationList(M,R), r:R, m:M):R == (u := search(m, Tabl)) case "failed" => Tabl.m := r zero?(r := r + u::R) => (remove!(m, Tabl); 0) Tabl.m := r a + b == Tabl := table()$AssociationList(M,R) for t in a repeat Tabl t.Mn := t.Cf for t in b repeat addterm(Tabl, t.Cf, t.Mn) [[Tabl m, m]$Term for m in keys Tabl] a:% * b:% == Tabl := table()$AssociationList(M,R) for ta in a repeat for tb in (b pretend List(Term)) repeat addterm(Tabl, ta.Cf*tb.Cf, ta.Mn*tb.Mn) [[Tabl.m, m]$Term for m in keys Tabl] @ \section{package MRF2 MonoidRingFunctions2} <<package MRF2 MonoidRingFunctions2>>= )abbrev package MRF2 MonoidRingFunctions2 ++ Author: Johannes Grabmeier ++ Date Created: 14 May 1991 ++ Date Last Updated: 14 May 1991 ++ Basic Operations: map ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: monoid ring, group ring, change of coefficient domain ++ References: ++ Description: ++ MonoidRingFunctions2 implements functions between ++ two monoid rings defined with the same monoid over different rings. MonoidRingFunctions2(R,S,M) : Exports == Implementation where R : Ring S : Ring M : Monoid Exports ==> with map: (R -> S, MonoidRing(R,M)) -> MonoidRing(S,M) ++ map(f,u) maps f onto the coefficients f the element ++ u of the monoid ring to create an element of a monoid ++ ring with the same monoid b. Implementation ==> add map(fn, u) == res : MonoidRing(S,M) := 0 for te in terms u repeat res := res + monomial(fn(te.coef), te.monom) res @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain MRING MonoidRing>> <<package MRF2 MonoidRingFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}