\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra modring.spad} \author{Patrizia Gianni, Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain MODRING ModularRing} <<domain MODRING ModularRing>>= )abbrev domain MODRING ModularRing ++ Author: P.Gianni, B.Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ These domains are used for the factorization and gcds ++ of univariate polynomials over the integers in order to work modulo ++ different primes. ++ See \spadtype{EuclideanModularRing} ,\spadtype{ModularField} ModularRing(R,Mod,reduction:(R,Mod) -> R, merge:(Mod,Mod) -> Union(Mod,"failed"), exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T where R : CommutativeRing Mod : AbelianMonoid C == Ring with modulus : % -> Mod ++ modulus(x) \undocumented coerce : % -> R ++ coerce(x) \undocumented reduce : (R,Mod) -> % ++ reduce(r,m) \undocumented exQuo : (%,%) -> Union(%,"failed") ++ exQuo(x,y) \undocumented recip : % -> Union(%,"failed") ++ recip(x) \undocumented inv : % -> % ++ inv(x) \undocumented T == add --representation Rep:= Record(val:R,modulo:Mod) --declarations x,y: % --define modulus(x) == x.modulo coerce(x: %): R == x.val coerce(i:Integer):% == [i::R,0]$Rep i:Integer * x:% == (i::%)*x coerce(x):OutputForm == (x.val)::OutputForm reduce (a:R,m:Mod) == [reduction(a,m),m]$Rep characteristic():NonNegativeInteger == characteristic()$R 0 == [0$R,0$Mod]$Rep 1 == [1$R,0$Mod]$Rep zero? x == zero? x.val -- one? x == one? x.val one? x == (x.val = 1) newmodulo(m1:Mod,m2:Mod) : Mod == r:=merge(m1,m2) r case "failed" => error "incompatible moduli" r::Mod x=y == x.val = y.val => true x.modulo = y.modulo => false (x-y).val = 0 x+y == reduce((x.val +$R y.val),newmodulo(x.modulo,y.modulo)) x-y == reduce((x.val -$R y.val),newmodulo(x.modulo,y.modulo)) -x == reduce ((-$R x.val),x.modulo) x*y == reduce((x.val *$R y.val),newmodulo(x.modulo,y.modulo)) exQuo(x,y) == xm:=x.modulo if xm ~=$Mod y.modulo then xm:=newmodulo(xm,y.modulo) r:=exactQuo(x.val,y.val,xm) r case "failed"=> "failed" [r::R,xm]$Rep --if R has EuclideanDomain then recip x == r:=exactQuo(1$R,x.val,x.modulo) r case "failed" => "failed" [r,x.modulo]$Rep inv x == if (u:=recip x) case "failed" then error("not invertible") else u::% @ \section{domain EMR EuclideanModularRing} <<domain EMR EuclideanModularRing>>= )abbrev domain EMR EuclideanModularRing ++ Description: ++ These domains are used for the factorization and gcds ++ of univariate polynomials over the integers in order to work modulo ++ different primes. ++ See \spadtype{ModularRing}, \spadtype{ModularField} EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R, merge:(Mod,Mod) -> Union(Mod,"failed"), exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T where S : CommutativeRing R : UnivariatePolynomialCategory S Mod : AbelianMonoid C == EuclideanDomain with modulus : % -> Mod ++ modulus(x) \undocumented coerce : % -> R ++ coerce(x) \undocumented reduce : (R,Mod) -> % ++ reduce(r,m) \undocumented exQuo : (%,%) -> Union(%,"failed") ++ exQuo(x,y) \undocumented recip : % -> Union(%,"failed") ++ recip(x) \undocumented inv : % -> % ++ inv(x) \undocumented elt : (%, R) -> R ++ elt(x,r) or x.r \undocumented T == ModularRing(R,Mod,reduction,merge,exactQuo) add --representation Rep:= Record(val:R,modulo:Mod) --declarations x,y,z: % divide(x,y) == t:=merge(x.modulo,y.modulo) t case "failed" => error "incompatible moduli" xm:=t::Mod yv:=y.val invlcy:R -- if one? leadingCoefficient yv then invlcy:=1 if (leadingCoefficient yv = 1) then invlcy:=1 else invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) r:=monicDivide(x.val,yv) [reduce(invlcy*r.quotient,xm),reduce(r.remainder,xm)] if R has fmecg:(R,NonNegativeInteger,S,R)->R then x rem y == t:=merge(x.modulo,y.modulo) t case "failed" => error "incompatible moduli" xm:=t::Mod yv:=y.val invlcy:R -- if not one? leadingCoefficient yv then if not (leadingCoefficient yv = 1) then invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) dy:=degree yv xv:=x.val while (d:=degree xv - dy)>=0 repeat xv:=reduction(fmecg(xv,d::NonNegativeInteger, leadingCoefficient xv,yv),xm) xv = 0 => return [xv,xm]$Rep [xv,xm]$Rep else x rem y == t:=merge(x.modulo,y.modulo) t case "failed" => error "incompatible moduli" xm:=t::Mod yv:=y.val invlcy:R -- if not one? leadingCoefficient yv then if not (leadingCoefficient yv = 1) then invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val yv:=reduction(invlcy*yv,xm) r:=monicDivide(x.val,yv) reduce(r.remainder,xm) euclideanSize x == degree x.val unitCanonical x == zero? x => x degree(x.val) = 0 => 1 -- one? leadingCoefficient(x.val) => x (leadingCoefficient(x.val) = 1) => x invlcx:%:=inv reduce((leadingCoefficient(x.val))::R,x.modulo) invlcx * x unitNormal x == -- zero?(x) or one?(leadingCoefficient(x.val)) => [1, x, 1] zero?(x) or ((leadingCoefficient(x.val)) = 1) => [1, x, 1] lcx := reduce((leadingCoefficient(x.val))::R,x.modulo) invlcx:=inv lcx degree(x.val) = 0 => [lcx, 1, invlcx] [lcx, invlcx * x, invlcx] elt(x : %,s : R) : R == reduction(elt(x.val,s),x.modulo) @ \section{domain MODFIELD ModularField} <<domain MODFIELD ModularField>>= )abbrev domain MODFIELD ModularField ++ These domains are used for the factorization and gcds ++ of univariate polynomials over the integers in order to work modulo ++ different primes. ++ See \spadtype{ModularRing}, \spadtype{EuclideanModularRing} ModularField(R,Mod,reduction:(R,Mod) -> R, merge:(Mod,Mod) -> Union(Mod,"failed"), exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T where R : CommutativeRing Mod : AbelianMonoid C == Field with modulus : % -> Mod ++ modulus(x) \undocumented coerce : % -> R ++ coerce(x) \undocumented reduce : (R,Mod) -> % ++ reduce(r,m) \undocumented exQuo : (%,%) -> Union(%,"failed") ++ exQuo(x,y) \undocumented T == ModularRing(R,Mod,reduction,merge,exactQuo) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain MODRING ModularRing>> <<domain EMR EuclideanModularRing>> <<domain MODFIELD ModularField>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}