\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra modmon.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain MODMON ModMonic}
<<domain MODMON ModMonic>>=
)abbrev domain MODMON ModMonic
++ Description:
++ This package \undocumented
 
ModMonic(R,P): C == T
 where
  R: Ring
  P: UnivariatePolynomialCategory(R)
  C == Join(UnivariatePolynomialCategory(R),CoercibleFrom P) with
  --operations
    setPoly : P -> P
	++ setPoly(x) \undocumented
    modulus : -> P
	++ modulus() \undocumented
    reduce: P -> %
	++ reduce(x) \undocumented
    lift: % -> P --reduce lift = identity
	++ lift(x) \undocumented
    Vectorise: % -> Vector(R)
	++ Vectorise(x) \undocumented
    UnVectorise: Vector(R) -> %
	++ UnVectorise(v) \undocumented
    An: % -> Vector(R)
	++ An(x) \undocumented
    pow : -> PrimitiveArray(%)
	++ pow() \undocumented
    computePowers : -> PrimitiveArray(%)
	++ computePowers() \undocumented
    if R has FiniteFieldCategory then
       frobenius: % -> %
	++ frobenius(x) \undocumented
    --LinearTransf: (%,Vector(R)) -> SquareMatrix<deg> R
  --assertions
    if R has Finite then Finite
  T == add
      Rep := P
    --constants
      m:Rep := monomial(1,1)$Rep --| degree(m) > 0 and LeadingCoef(m) = R$1
      d := degree(m)$Rep
      d1 := (d-1):NonNegativeInteger
      twod := 2*d1+1
      frobenius?:Boolean := R has FiniteFieldCategory
      --VectorRep:= DirectProduct(d:NonNegativeInteger,R)
    --declarations
      x,y: %
      d,n: Integer
      e,k1,k2: NonNegativeInteger
      c: R
      --vect: Vector(R)
      power: PrimitiveArray(%) := new(0,0)
      frobeniusPower: PrimitiveArray(%) := new(0,0)
      computeFrobeniusPowers : () -> PrimitiveArray(%)
    --representations
    --mutable m    --take this out??
    --define
      setPoly (mon : P) ==
        mon =$Rep m => mon
        oldm := m
        not one? leadingCoefficient mon => error "polynomial must be monic"
        -- following copy code needed since FFPOLY can modify mon
        copymon:Rep:= 0
        while not zero? mon repeat
           copymon := monomial(leadingCoefficient mon, degree mon)$Rep + copymon
           mon := reductum mon
        m := copymon
        d := degree(m)$Rep
        d1 := (d-1)::NonNegativeInteger
        twod := 2*d1+1
        power := computePowers()
        if frobenius? then
          degree(oldm)>1 and not((oldm exquo$Rep m) case "failed") =>
              for i in 1..d1 repeat
                frobeniusPower(i) := reduce lift frobeniusPower(i)
          frobeniusPower := computeFrobeniusPowers()
        m
      modulus == m
      if R has Finite then
         size == d * size()$R
         random == UnVectorise([random()$R for i in 0..d1])
      0 == 0$Rep
      1 == 1$Rep
      c * x == c *$Rep x
      n * x == (n::R) *$Rep x
      coerce(c:R):% == monomial(c,0)$Rep
      coerce(x:%):OutputForm == coerce(x)$Rep
      coefficient(x,e):R == coefficient(x,e)$Rep
      reductum(x) == reductum(x)$Rep
      leadingCoefficient x == (leadingCoefficient x)$Rep
      degree x == (degree x)$Rep
      lift(x) == x pretend Rep
      reduce(p) == (monicDivide(p,m)$Rep).remainder
      coerce(p: P): % == reduce(p)
      x = y == x =$Rep y
      x + y == x +$Rep y
      - x == -$Rep x
      x * y ==
        p := x *$Rep y
        ans:=0$Rep
        while (n:=degree p)>d1 repeat
           ans:=ans + leadingCoefficient(p)*power.(n-d)
           p := reductum p
        ans+p
      Vectorise(x) == [coefficient(lift(x),i) for i in 0..d1]
      UnVectorise(vect) ==
        reduce(+/[monomial(vect.(i+1),i) for i in 0..d1]@%::Rep)
      computePowers ==
           mat : PrimitiveArray(%):= new(d,0)
           mat.0:= reductum(-m)$Rep
           w: % := monomial$Rep (1,1)
           for i in 1..d1 repeat
              mat.i := w *$Rep mat.(i-1)
              if degree mat.i=d then
                mat.i:= reductum mat.i + leadingCoefficient mat.i * mat.0
           mat
      if frobenius? then
          computeFrobeniusPowers() ==
            mat : PrimitiveArray(%):= new(d,1)
            mat.1:= mult := monomial(1, size()$R)$%
            for i in 2..d1 repeat
               mat.i := mult * mat.(i-1)
            mat

          frobenius(a:%):% ==
            aq:% := 0
            while not zero? a repeat
              aq:= aq + leadingCoefficient(a)*frobeniusPower(degree a)
              a := reductum a
            aq
         
      pow == power
      monomial(c,e)==
         if e<d then monomial(c,e)$Rep
         else
            if e<=twod then
               c * power.(e-d)
            else
               k1:=e quo twod
               k2 := (e-k1*twod)::NonNegativeInteger
               reduce(((power.d1 **k1)*monomial(c,k2))::Rep)
      if R has Field then

         (x:% exquo y:%):Union(%, "failed") ==
            uv := extendedEuclidean(y, modulus(), x)$Rep
            uv case "failed" => "failed"
            return reduce(uv.coef1::Rep)

         recip(y:%):Union(%, "failed") ==  1 exquo y
         divide(x:%, y:%) ==
            (q := (x exquo y)) case "failed" => error "not divisible"
            [q, 0]

--     An(MM) == Vectorise(-(reduce(reductum(m))::MM))
--     LinearTransf(vect,MM) ==
--       ans:= 0::SquareMatrix<d>(R)
--       for i in 1..d do setelt(ans,i,1,vect.i)
--       for j in 2..d do
--          setelt(ans,1,j, elt(ans,d,j-1) * An(MM).1)
--          for i in 2..d do
--            setelt(ans,i,j, elt(ans,i-1,j-1) + elt(ans,d,j-1) * An(MM).i)
--       ans

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain MODMON ModMonic>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}