\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra moddfact.spad} \author{Barry Trager, James Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package MDDFACT ModularDistinctDegreeFactorizer} <<package MDDFACT ModularDistinctDegreeFactorizer>>= )abbrev package MDDFACT ModularDistinctDegreeFactorizer ++ Author: Barry Trager ++ Date Created: ++ Date Last Updated: 20.9.95 (JHD) ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package supports factorization and gcds ++ of univariate polynomials over the integers modulo different ++ primes. The inputs are given as polynomials over the integers ++ with the prime passed explicitly as an extra argument. ModularDistinctDegreeFactorizer(U):C == T where U : UnivariatePolynomialCategory(Integer) I ==> Integer NNI ==> NonNegativeInteger PI ==> PositiveInteger V ==> Vector L ==> List DDRecord ==> Record(factor:EMR,degree:I) UDDRecord ==> Record(factor:U,degree:I) DDList ==> L DDRecord UDDList ==> L UDDRecord C == with gcd:(U,U,I) -> U ++ gcd(f1,f2,p) computes the gcd of the univariate polynomials ++ f1 and f2 modulo the integer prime p. linears: (U,I) -> U ++ linears(f,p) returns the product of all the linear factors ++ of f modulo p. Potentially incorrect result if f is not ++ square-free modulo p. factor:(U,I) -> L U ++ factor(f1,p) returns the list of factors of the univariate ++ polynomial f1 modulo the integer prime p. ++ Error: if f1 is not square-free modulo p. ddFact:(U,I) -> UDDList ++ ddFact(f,p) computes a distinct degree factorization of the ++ polynomial f modulo the prime p, i.e. such that each factor ++ is a product of irreducibles of the same degrees. The input ++ polynomial f is assumed to be square-free modulo p. separateFactors:(UDDList,I) -> L U ++ separateFactors(ddl, p) refines the distinct degree factorization ++ produced by \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} ++ to give a complete list of factors. exptMod:(U,I,U,I) -> U ++ exptMod(f,n,g,p) raises the univariate polynomial f to the nth ++ power modulo the polynomial g and the prime p. T == add reduction(u:U,p:I):U == zero? p => u map(positiveRemainder(#1,p),u) merge(p:I,q:I):Union(I,"failed") == p = q => p p = 0 => q q = 0 => p "failed" modInverse(c:I,p:I):I == (extendedEuclidean(c,p,1)::Record(coef1:I,coef2:I)).coef1 exactquo(u:U,v:U,p:I):Union(U,"failed") == invlcv:=modInverse(leadingCoefficient v,p) r:=monicDivide(u,reduction(invlcv*v,p)) not zero? reduction(r.remainder,p) => "failed" reduction(invlcv*r.quotient,p) EMR := EuclideanModularRing(Integer,U,Integer, reduction,merge,exactquo) probSplit2:(EMR,EMR,I) -> Union(List EMR,"failed") trace:(EMR,I,EMR) -> EMR ddfactor:EMR -> L EMR ddfact:EMR -> DDList sepFact1:DDRecord -> L EMR sepfact:DDList -> L EMR probSplit:(EMR,EMR,I) -> Union(L EMR,"failed") makeMonic:EMR -> EMR exptmod:(EMR,I,EMR) -> EMR lc(u:EMR):I == leadingCoefficient(u::U) degree(u:EMR):I == degree(u::U) makeMonic(u) == modInverse(lc(u),modulus(u)) * u i:I exptmod(u1,i,u2) == negative? i => error("negative exponentiation not allowed for exptMod") ans:= 1$EMR while positive? i repeat if odd?(i) then ans:= (ans * u1) rem u2 i:= i quo 2 u1:= (u1 * u1) rem u2 ans exptMod(a,i,b,q) == ans:= exptmod(reduce(a,q),i,reduce(b,q)) ans::U ddfactor(u) == if not one?(c:= lc(u)) then u:= makeMonic(u) ans:= sepfact(ddfact(u)) cons(c::EMR,[makeMonic(f) for f in ans | positive? degree(f)]) gcd(u,v,q) == gcd(reduce(u,q),reduce(v,q))::U factor(u,q) == v:= reduce(u,q) dv:= reduce(differentiate(u),q) positive? degree gcd(v,dv) => error("Modular factor: polynomial must be squarefree") ans:= ddfactor v [f::U for f in ans] ddfact(u) == p:=modulus u w:= reduce(monomial(1,1)$U,p) m:= w d:I:= 1 if not one?(c:= lc(u)) then u:= makeMonic u ans:DDList:= [] repeat w:= exptmod(w,p,u) g:= gcd(w - m,u) if positive? degree g then g:= makeMonic(g) ans:= [[g,d],:ans] u:= (u quo g) degree(u) = 0 => return [[c::EMR,0$I],:ans] d:= d+1 d > (degree(u):I quo 2) => return [[c::EMR,0$I],[u,degree(u)],:ans] ddFact(u,q) == ans:= ddfact(reduce(u,q)) [[(dd.factor)::U,dd.degree]$UDDRecord for dd in ans]$UDDList linears(u,q) == uu:=reduce(u,q) m:= reduce(monomial(1,1)$U,q) gcd(exptmod(m,q,uu)-m,uu)::U sepfact(factList) == "append"/[sepFact1(f) for f in factList] separateFactors(uddList,q) == ans:= sepfact [[reduce(udd.factor,q),udd.degree]$DDRecord for udd in uddList]$DDList [f::U for f in ans] decode(s:Integer, p:Integer, x:U):U == s<p => s::U qr := divide(s,p) qr.remainder :: U + x*decode(qr.quotient, p, x) sepFact1(f) == u:= f.factor p:=modulus u (d := f.degree) = 0 => [u] if not one?(c:= lc(u)) then u:= makeMonic(u) d = (du := degree(u)) => [u] ans:L EMR:= [] x:U:= monomial(1,1) -- for small primes find linear factors by exhaustion d=1 and p < 1000 => for i: local in 0.. while positive? du repeat if u(i::U) = 0 then ans := cons(reduce(x-(i::U),p),ans) du := du-1 ans y:= x s:I:= 0 ss:I := 1 stack:L EMR:= [u] until null stack repeat t:= reduce(((s::U)+x),p) if not ((flist:= probSplit(first stack,t,d)) case "failed") then stack:= rest stack for fact in flist repeat f1:= makeMonic(fact) (df1:= degree(f1)) = 0 => nil df1 > d => stack:= [f1,:stack] ans:= [f1,:ans] p = 2 => ss:= ss + 1 x := y * decode(ss, p, y) s:= s+1 s = p => s:= 0 ss := ss + 1 x:= y * decode(ss, p, y) not one? leadingCoefficient(x) => ss := p ** degree x x:= y ** (degree(x) + 1) [c * first(ans),:rest(ans)] probSplit(u,t,d) == (p:=modulus(u)) = 2 => probSplit2(u,t,d) f1:= gcd(u,t) r:= ((p**(d:NNI)-1) quo 2):NNI n:= exptmod(t,r,u) f2:= gcd(u,n + 1) (g:= f1 * f2) = 1 => "failed" g = u => "failed" [f1,f2,(u quo g)] probSplit2(u,t,d) == f:= gcd(u,trace(t,d,u)) f = 1 => "failed" degree u = degree f => "failed" [1,f,u quo f] trace(t,d,u) == p:=modulus(t) d:= d - 1 tt:=t while positive? d repeat tt:= (tt + (t:=exptmod(t,p,u))) rem u d:= d - 1 tt @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package MDDFACT ModularDistinctDegreeFactorizer>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}