\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra mlift.spad.jhd}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package MLIFT MultivariateLifting}
<<package MLIFT MultivariateLifting>>=
)abbrev package MLIFT MultivariateLifting
++ Author : P.Gianni.
++ Description: 
++ This package provides the functions for the multivariate "lifting", using
++ an algorithm of Paul Wang.
++ This package will work for every euclidean domain R which has property
++ F, i.e. there exists a factor operation in \spad{R[x]}.
 
MultivariateLifting(E,OV,R,P) : C == T
 where
  OV        :   OrderedSet
  E         :   OrderedAbelianMonoidSup
  R         :   EuclideanDomain  -- with property "F"
  Z         ==> Integer
  BP        ==> SparseUnivariatePolynomial R
  P         :   PolynomialCategory(R,E,OV)
  SUP       ==> SparseUnivariatePolynomial P
  NNI       ==> NonNegativeInteger
  Term      ==> Record(expt:NNI,pcoef:P)
  VTerm     ==> List Term
  Table     ==> Vector List BP
  L         ==> List
 
  C == with
    corrPoly:      (SUP,L OV,L R,L NNI,L SUP,Table,R) -> Union(L SUP,"failed")
    lifting:       (SUP,L OV,L BP,L R,L P,L NNI,R) -> Union(L SUP,"failed")
    lifting1:      (SUP,L OV,L SUP,L R,L P,L VTerm,L NNI,Table,R) ->
                                                Union(L SUP,"failed")
 
  T == add
    GenExEuclid(R,BP)
    NPCoef(BP,E,OV,R,P)
    IntegerCombinatoricFunctions(Z)

    SUPF2   ==> SparseUnivariatePolynomialFunctions2

    DetCoef ==> Record(deter:L SUP,dterm:L VTerm,nfacts:L BP,
                       nlead:L P)
 
              ---   local functions   ---
    normalDerivM    :    (P,Z,OV)     ->  P
    normalDeriv     :     (SUP,Z)     ->  SUP
    subslead        :     (SUP,P)     ->  SUP
    subscoef        :   (SUP,L Term)  ->  SUP
    maxDegree       :   (SUP,OV)      ->  NonNegativeInteger
 
 
    corrPoly(m:SUP,lvar:L OV,fval:L R,ld:L NNI,flist:L SUP,
             table:Table,pmod:R):Union(L SUP,"failed") ==
      --  The correction coefficients are evaluated recursively.
      --   Extended Euclidean algorithm for the multivariate case.
 
      -- the polynomial is univariate  --
      #lvar=0 =>
        lp:=solveid(map(ground,m)$SUPF2(P,R),pmod,table)
        if lp case "failed" then return "failed"
        lcoef:= [map(coerce,mp)$SUPF2(R,P) for mp in lp::L BP]
 
 
      diff,ddiff,pol,polc:SUP
      listpolv,listcong:L SUP
      deg1:NNI:= ld.first
      np:NNI:= #flist
      a:P:= fval.first ::P
      y:OV:=lvar.first
      lvar:=lvar.rest
      listpolv:L SUP := [map(eval(#1,y,a),f1) for f1 in flist]
      um:=map(eval(#1,y,a),m)
      flcoef:=corrPoly(um,lvar,fval.rest,ld.rest,listpolv,table,pmod)
      if flcoef case "failed" then return "failed"
      else lcoef:=flcoef :: L SUP
      listcong:=[*/[flist.i for i in 1..np | i^=l] for l in 1..np]
      polc:SUP:= (monomial(1,y,1) - a)::SUP
      pol := 1$SUP
      diff:=m- +/[lcoef.i*listcong.i for i in 1..np]
      for l in 1..deg1 repeat
        if diff=0 then return lcoef
        pol := pol*polc
        (ddiff:= map(eval(normalDerivM(#1,l,y),y,a),diff)) = 0 => "next l"
        fbeta := corrPoly(ddiff,lvar,fval.rest,ld.rest,listpolv,table,pmod)
        if fbeta case "failed" then return "failed"
        else beta:=fbeta :: L SUP
        lcoef := [lcoef.i+beta.i*pol  for i in 1..np]
        diff:=diff- +/[listcong.i*beta.i for i in 1..np]*pol
      lcoef
 
 
 
    lifting1(m:SUP,lvar:L OV,plist:L SUP,vlist:L R,tlist:L P,_
      coeflist:L VTerm,listdeg:L NNI,table:Table,pmod:R) :Union(L SUP,"failed") ==
    -- The factors of m (multivariate) are determined ,
    -- We suppose to know the true univariate factors
    -- some coefficients are determined
      conglist:L SUP:=empty()
      nvar : NNI:= #lvar
      pol,polc:P
      mc,mj:SUP
      testp:Boolean:= (not empty?(tlist))
      lalpha : L SUP := empty()
      tlv:L P:=empty()
      subsvar:L OV:=empty()
      subsval:L R:=empty()
      li:L OV := lvar
      ldeg:L NNI:=empty()
      clv:L VTerm:=empty()
      --j =#variables, i=#factors
      for j in 1..nvar repeat
        x  := li.first
        li := rest li
        conglist:= plist
        v := vlist.first
        vlist := rest vlist
        degj := listdeg.j
        ldeg := cons(degj,ldeg)
        subsvar:=cons(x,subsvar)
        subsval:=cons(v,subsval)
 
      --substitute the determined coefficients
        if testp then
          if j<nvar then
            tlv:=[eval(p,li,vlist) for p in tlist]
            clv:=[[[term.expt,eval(term.pcoef,li,vlist)]$Term
                   for term in clist] for clist  in coeflist]
          else (tlv,clv):=(tlist,coeflist)
          plist :=[subslead(p,lcp) for p in plist for lcp in tlv]
          if not(empty? coeflist) then
            plist:=[subscoef(tpol,clist)
                   for tpol in plist for clist in clv]
        mj := map(eval(#1,li,vlist),m)  --m(x1,..,xj,aj+1,..,an
        polc := x::P - v::P  --(xj-aj)
        pol:= 1$P
      --Construction of Rik, k in 1..right degree for xj+1
        for k in 1..degj repeat  --I can exit before
         pol := pol*polc
         mc := */[term for term in plist]-mj
         if mc=0 then leave "next var"
         --Modulus Dk
         mc:=map(normalDerivM(#1,k,x),mc)
         (mc := map(eval(#1,[x],[v]),mc))=0 => "next k"
         flalpha:=corrPoly(mc,subsvar.rest,subsval.rest,
                          ldeg.rest,conglist,table,pmod)
         if flalpha case "failed" then return "failed"
         else lalpha:=flalpha :: L SUP
         plist:=[term-alpha*pol for term in plist for alpha in lalpha]
        for term in plist repeat degj:=degj-maxDegree(term,x)
        degj ^= 0 => return "failed"
      plist
        --There are not extraneous factors
 
    maxDegree(um:SUP,x:OV):NonNegativeInteger ==
       ans:NonNegativeInteger:=0
       while um ^= 0 repeat
          ans:=max(ans,degree(leadingCoefficient um,x))
          um:=reductum um
       ans

    lifting(um:SUP,lvar:L OV,plist:L BP,vlist:L R,
            tlist:L P,listdeg:L NNI,pmod:R):Union(L SUP,"failed") ==
    -- The factors of m (multivariate) are determined, when the
    --  univariate true factors are known and some coefficient determined
      nplist:List SUP:=[map(coerce,pp)$SUPF2(R,P) for pp in plist]
      empty? tlist =>
        table:=tablePow(degree um,pmod,plist)
        table case "failed" => error "Table construction failed in MLIFT"
        lifting1(um,lvar,nplist,vlist,tlist,empty(),listdeg,table,pmod)
      ldcoef:DetCoef:=npcoef(um,plist,tlist)
      if not empty?(listdet:=ldcoef.deter) then
        if #listdet = #plist  then return listdet
        plist:=ldcoef.nfacts
        nplist:=[map(coerce,pp)$SUPF2(R,P) for pp in plist]
        um:=(um exquo */[pol for pol in listdet])::SUP
        tlist:=ldcoef.nlead
        tab:=tablePow(degree um,pmod,plist.rest)
      else tab:=tablePow(degree um,pmod,plist)
      tab case "failed" => error "Table construction failed in MLIFT"
      table:Table:=tab
      ffl:=lifting1(um,lvar,nplist,vlist,tlist,ldcoef.dterm,listdeg,table,pmod)
      if ffl case "failed" then return "failed"
      append(listdet,ffl:: L SUP)

    -- normalDerivM(f,m,x) = the normalized (divided by m!) m-th
    -- derivative with respect to x of the multivariate polynomial f
    normalDerivM(g:P,m:Z,x:OV) : P ==
     multivariate(normalDeriv(univariate(g,x),m),x)

    normalDeriv(f:SUP,m:Z) : SUP ==
     (n1:Z:=degree f) < m => 0$SUP
     n1=m => leadingCoefficient f :: SUP
     k:=binomial(n1,m)
     ris:SUP:=0$SUP
     n:Z:=n1
     while n>= m repeat
       while n1>n repeat
         k:=(k*(n1-m)) quo n1
         n1:=n1-1
       ris:=ris+monomial(k*leadingCoefficient f,(n-m)::NNI)
       f:=reductum f
       n:=degree f
     ris

    subslead(m:SUP,pol:P):SUP ==
      dm:NNI:=degree m
      monomial(pol,dm)+reductum m
 
    subscoef(um:SUP,lterm:L Term):SUP ==
      dm:NNI:=degree um
      new:=monomial(leadingCoefficient um,dm)
      for k in dm-1..0 by -1 repeat
        i:NNI:=k::NNI
        empty?(lterm) or lterm.first.expt^=i =>
                                new:=new+monomial(coefficient(um,i),i)
        new:=new+monomial(lterm.first.pcoef,i)
        lterm:=lterm.rest
      new

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package MLIFT MultivariateLifting>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}