\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra mlift.spad.jhd} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package MLIFT MultivariateLifting} <<package MLIFT MultivariateLifting>>= )abbrev package MLIFT MultivariateLifting ++ Author : P.Gianni. ++ Description: ++ This package provides the functions for the multivariate "lifting", using ++ an algorithm of Paul Wang. ++ This package will work for every euclidean domain R which has property ++ F, i.e. there exists a factor operation in \spad{R[x]}. MultivariateLifting(E,OV,R,P) : C == T where OV : OrderedSet E : OrderedAbelianMonoidSup R : EuclideanDomain -- with property "F" Z ==> Integer BP ==> SparseUnivariatePolynomial R P : PolynomialCategory(R,E,OV) SUP ==> SparseUnivariatePolynomial P NNI ==> NonNegativeInteger Term ==> Record(expt:NNI,pcoef:P) VTerm ==> List Term Table ==> Vector List BP L ==> List C == with corrPoly: (SUP,L OV,L R,L NNI,L SUP,Table,R) -> Union(L SUP,"failed") lifting: (SUP,L OV,L BP,L R,L P,L NNI,R) -> Union(L SUP,"failed") lifting1: (SUP,L OV,L SUP,L R,L P,L VTerm,L NNI,Table,R) -> Union(L SUP,"failed") T == add GenExEuclid(R,BP) NPCoef(BP,E,OV,R,P) IntegerCombinatoricFunctions(Z) SUPF2 ==> SparseUnivariatePolynomialFunctions2 DetCoef ==> Record(deter:L SUP,dterm:L VTerm,nfacts:L BP, nlead:L P) --- local functions --- normalDerivM : (P,Z,OV) -> P normalDeriv : (SUP,Z) -> SUP subslead : (SUP,P) -> SUP subscoef : (SUP,L Term) -> SUP maxDegree : (SUP,OV) -> NonNegativeInteger corrPoly(m:SUP,lvar:L OV,fval:L R,ld:L NNI,flist:L SUP, table:Table,pmod:R):Union(L SUP,"failed") == -- The correction coefficients are evaluated recursively. -- Extended Euclidean algorithm for the multivariate case. -- the polynomial is univariate -- #lvar=0 => lp:=solveid(map(ground,m)$SUPF2(P,R),pmod,table) if lp case "failed" then return "failed" lcoef:= [map(coerce,mp)$SUPF2(R,P) for mp in lp::L BP] diff,ddiff,pol,polc:SUP listpolv,listcong:L SUP deg1:NNI:= ld.first np:NNI:= #flist a:P:= fval.first ::P y:OV:=lvar.first lvar:=lvar.rest listpolv:L SUP := [map(eval(#1,y,a),f1) for f1 in flist] um:=map(eval(#1,y,a),m) flcoef:=corrPoly(um,lvar,fval.rest,ld.rest,listpolv,table,pmod) if flcoef case "failed" then return "failed" else lcoef:=flcoef :: L SUP listcong:=[*/[flist.i for i in 1..np | i^=l] for l in 1..np] polc:SUP:= (monomial(1,y,1) - a)::SUP pol := 1$SUP diff:=m- +/[lcoef.i*listcong.i for i in 1..np] for l in 1..deg1 repeat if diff=0 then return lcoef pol := pol*polc (ddiff:= map(eval(normalDerivM(#1,l,y),y,a),diff)) = 0 => "next l" fbeta := corrPoly(ddiff,lvar,fval.rest,ld.rest,listpolv,table,pmod) if fbeta case "failed" then return "failed" else beta:=fbeta :: L SUP lcoef := [lcoef.i+beta.i*pol for i in 1..np] diff:=diff- +/[listcong.i*beta.i for i in 1..np]*pol lcoef lifting1(m:SUP,lvar:L OV,plist:L SUP,vlist:L R,tlist:L P,_ coeflist:L VTerm,listdeg:L NNI,table:Table,pmod:R) :Union(L SUP,"failed") == -- The factors of m (multivariate) are determined , -- We suppose to know the true univariate factors -- some coefficients are determined conglist:L SUP:=empty() nvar : NNI:= #lvar pol,polc:P mc,mj:SUP testp:Boolean:= (not empty?(tlist)) lalpha : L SUP := empty() tlv:L P:=empty() subsvar:L OV:=empty() subsval:L R:=empty() li:L OV := lvar ldeg:L NNI:=empty() clv:L VTerm:=empty() --j =#variables, i=#factors for j in 1..nvar repeat x := li.first li := rest li conglist:= plist v := vlist.first vlist := rest vlist degj := listdeg.j ldeg := cons(degj,ldeg) subsvar:=cons(x,subsvar) subsval:=cons(v,subsval) --substitute the determined coefficients if testp then if j<nvar then tlv:=[eval(p,li,vlist) for p in tlist] clv:=[[[term.expt,eval(term.pcoef,li,vlist)]$Term for term in clist] for clist in coeflist] else (tlv,clv):=(tlist,coeflist) plist :=[subslead(p,lcp) for p in plist for lcp in tlv] if not(empty? coeflist) then plist:=[subscoef(tpol,clist) for tpol in plist for clist in clv] mj := map(eval(#1,li,vlist),m) --m(x1,..,xj,aj+1,..,an polc := x::P - v::P --(xj-aj) pol:= 1$P --Construction of Rik, k in 1..right degree for xj+1 for k in 1..degj repeat --I can exit before pol := pol*polc mc := */[term for term in plist]-mj if mc=0 then leave "next var" --Modulus Dk mc:=map(normalDerivM(#1,k,x),mc) (mc := map(eval(#1,[x],[v]),mc))=0 => "next k" flalpha:=corrPoly(mc,subsvar.rest,subsval.rest, ldeg.rest,conglist,table,pmod) if flalpha case "failed" then return "failed" else lalpha:=flalpha :: L SUP plist:=[term-alpha*pol for term in plist for alpha in lalpha] for term in plist repeat degj:=degj-maxDegree(term,x) degj ^= 0 => return "failed" plist --There are not extraneous factors maxDegree(um:SUP,x:OV):NonNegativeInteger == ans:NonNegativeInteger:=0 while um ^= 0 repeat ans:=max(ans,degree(leadingCoefficient um,x)) um:=reductum um ans lifting(um:SUP,lvar:L OV,plist:L BP,vlist:L R, tlist:L P,listdeg:L NNI,pmod:R):Union(L SUP,"failed") == -- The factors of m (multivariate) are determined, when the -- univariate true factors are known and some coefficient determined nplist:List SUP:=[map(coerce,pp)$SUPF2(R,P) for pp in plist] empty? tlist => table:=tablePow(degree um,pmod,plist) table case "failed" => error "Table construction failed in MLIFT" lifting1(um,lvar,nplist,vlist,tlist,empty(),listdeg,table,pmod) ldcoef:DetCoef:=npcoef(um,plist,tlist) if not empty?(listdet:=ldcoef.deter) then if #listdet = #plist then return listdet plist:=ldcoef.nfacts nplist:=[map(coerce,pp)$SUPF2(R,P) for pp in plist] um:=(um exquo */[pol for pol in listdet])::SUP tlist:=ldcoef.nlead tab:=tablePow(degree um,pmod,plist.rest) else tab:=tablePow(degree um,pmod,plist) tab case "failed" => error "Table construction failed in MLIFT" table:Table:=tab ffl:=lifting1(um,lvar,nplist,vlist,tlist,ldcoef.dterm,listdeg,table,pmod) if ffl case "failed" then return "failed" append(listdet,ffl:: L SUP) -- normalDerivM(f,m,x) = the normalized (divided by m!) m-th -- derivative with respect to x of the multivariate polynomial f normalDerivM(g:P,m:Z,x:OV) : P == multivariate(normalDeriv(univariate(g,x),m),x) normalDeriv(f:SUP,m:Z) : SUP == (n1:Z:=degree f) < m => 0$SUP n1=m => leadingCoefficient f :: SUP k:=binomial(n1,m) ris:SUP:=0$SUP n:Z:=n1 while n>= m repeat while n1>n repeat k:=(k*(n1-m)) quo n1 n1:=n1-1 ris:=ris+monomial(k*leadingCoefficient f,(n-m)::NNI) f:=reductum f n:=degree f ris subslead(m:SUP,pol:P):SUP == dm:NNI:=degree m monomial(pol,dm)+reductum m subscoef(um:SUP,lterm:L Term):SUP == dm:NNI:=degree um new:=monomial(leadingCoefficient um,dm) for k in dm-1..0 by -1 repeat i:NNI:=k::NNI empty?(lterm) or lterm.first.expt^=i => new:=new+monomial(coefficient(um,i),i) new:=new+monomial(lterm.first.pcoef,i) lterm:=lterm.rest new @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package MLIFT MultivariateLifting>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}