\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra mfinfact.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package MFINFACT MultFiniteFactorize}
<<package MFINFACT MultFiniteFactorize>>=
)abbrev package MFINFACT MultFiniteFactorize
++ Author: P. Gianni
++ Date Created: Summer 1990
++ Date Last Updated: 19 March 1992
++ Basic Functions:
++ Related Constructors: PrimeField, FiniteField, Polynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: Package for factorization of multivariate polynomials
++ over finite fields.


MultFiniteFactorize(OV,E,F,PG) : C == T
 where
  F          :   FiniteFieldCategory
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  PG         :   PolynomialCategory(F,E,OV)
  SUP        ==> SparseUnivariatePolynomial
  R          ==> SUP F
  P          ==> SparseMultivariatePolynomial(R,OV)
  Z          ==> Integer
  FFPOLY     ==> FiniteFieldPolynomialPackage(F)
  MParFact   ==> Record(irr:P,pow:Z)
  MFinalFact ==> Record(contp:R,factors:List MParFact)
  SUParFact    ==> Record(irr:SUP P,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)

                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent

  C == with

    factor      : PG     ->  Factored PG
      ++ factor(p) produces the complete factorization of the multivariate
      ++ polynomial p over a finite field.
    factor      : SUP PG     ->  Factored SUP PG
      ++ factor(p) produces the complete factorization of the multivariate
      ++ polynomial p over a finite field. p is represented as a univariate
      ++ polynomial with multivariate coefficients over a finite field.

  T == add

    import LeadingCoefDetermination(OV,IndexedExponents OV,R,P)
    import MultivariateLifting(IndexedExponents OV,OV,R,P)
    import FactoringUtilities(IndexedExponents OV,OV,R,P)
    import FactoringUtilities(E,OV,F,PG)
    import GenExEuclid(R,SUP R)

    NNI       ==> NonNegativeInteger
    L         ==> List
    UPCF2     ==> UnivariatePolynomialCategoryFunctions2
    LeadFact  ==> Record(polfac:L P,correct:R,corrfact:L SUP R)
    ContPrim  ==> Record(cont:P,prim:P)
    ParFact   ==> Record(irr:SUP R,pow:Z)
    FinalFact ==> Record(contp:R,factors:L ParFact)
    NewOrd    ==> Record(npol:SUP P,nvar:L OV,newdeg:L NNI)
    Valuf     ==> Record(inval:L L R,unvfact:L SUP R,lu:R,complead:L R)

                   ----  Local Functions  ----
    ran       :                   Z              -> R
    mFactor   :                (P,Z)             -> MFinalFact
    supFactor :              (SUP P,Z)           -> SUPFinalFact
    mfconst   :        (SUP P,Z,L OV,L NNI)      -> L SUP P
    mfpol     :        (SUP P,Z,L OV,L NNI)      -> L SUP P
    varChoose :           (P,L OV,L NNI)         -> NewOrd
    simplify  :         (P,Z,L OV,L NNI)         -> MFinalFact
    intChoose :        (SUP P,L OV,R,L P,L L R)  -> Valuf
    pretest   :         (P,NNI,L OV,L R)         -> FinalFact
    checkzero :            (SUP P,SUP R)         -> Boolean
    pushdcoef :                  PG              -> P
    pushdown  :                (PG,OV)           -> P
    pushupconst :               (R,OV)           -> PG
    pushup    :                 (P,OV)           -> PG
    norm      :               L SUP R            -> Integer
    constantCase :        (P,L MParFact)         -> MFinalFact
    pM          :             L SUP R            -> R
    intfact     :     (SUP P,L OV,L NNI,MFinalFact,L L R) -> L SUP P

    basicVar:OV:=NIL$Lisp pretend OV  -- variable for the basic step


    convertPUP(lfg:MFinalFact): SUPFinalFact ==
      [lfg.contp,[[lff.irr ::SUP P,lff.pow]$SUParFact
                    for lff in lfg.factors]]$SUPFinalFact

    supFactor(um:SUP P,dx:Z) : SUPFinalFact ==
        degree(um)=0 => convertPUP(mFactor(ground um,dx))
        lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um]
        lcont:SUP P
        lf:L SUP P

        flead : SUPFinalFact:=[0,empty()]$SUPFinalFact
        factorlist:L SUParFact :=empty()

        mdeg :=minimumDegree um     ---- is the Mindeg > 0? ----
        if positive? mdeg then
          f1:SUP P:=monomial(1,mdeg)
          um:=(um exquo f1)::SUP P
          factorlist:=cons([monomial(1,1),mdeg],factorlist)
          if degree um=0 then return
            lfg:=convertPUP mFactor(ground um, dx)
            [lfg.contp,append(factorlist,lfg.factors)]


        om:=map(pushup(#1,basicVar),um)$UPCF2(P,SUP P,PG,SUP PG)
        sqfacs:=squareFree(om)
        lcont:=map(pushdown(#1,basicVar),unit sqfacs)$UPCF2(PG,SUP PG,P,SUP P)

                                   ----   Factorize the content  ----
        if ground? lcont then
          flead:=convertPUP constantCase(ground lcont,empty())
        else
          flead:=supFactor(lcont,dx)

        factorlist:=flead.factors

                                 ----  Make the polynomial square-free  ----
        sqqfact:=[[map(pushdown(#1,basicVar),ff.factor),ff.exponent]
                      for ff in factors sqfacs]

                        ---  Factorize the primitive square-free terms ---
        for fact in sqqfact repeat
          ffactor:SUP P:=fact.irr
          ffexp:=fact.pow
          ffcont:=content ffactor
          coefs := coefficients ffactor
          ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar]
          if ground?(leadingCoefficient ffactor) then
             lf:= mfconst(ffactor,dx,lvar,ldeg)
          else lf:=mfpol(ffactor,dx,lvar,ldeg)
          auxfl:=[[lfp,ffexp]$SUParFact  for lfp in lf]
          factorlist:=append(factorlist,auxfl)
        lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI)
                             for f in factorlist]
        [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R,
                       factorlist]$SUPFinalFact

    factor(um:SUP PG):Factored SUP PG ==
        lv:List OV:=variables um
        ld:=degree(um,lv)
        dx:="min"/ld
        basicVar:=lv.position(dx,ld)
        cm:=map(pushdown(#1,basicVar),um)$UPCF2(PG,SUP PG,P,SUP P)
        flist := supFactor(cm,dx)
        pushupconst(flist.contp,basicVar)::SUP(PG) *
          (*/[primeFactor(map(pushup(#1,basicVar),u.irr)$UPCF2(P,SUP P,PG,SUP PG),
                 u.pow) for u in flist.factors])



    mFactor(m:P,dx:Z) : MFinalFact ==
      ground?(m) => constantCase(m,empty())
      lvar:L OV:= variables m
      lcont:P
      lf:L SUP P
      flead : MFinalFact:=[1,empty()]$MFinalFact
      factorlist:L MParFact :=empty()
                                  ---- is the Mindeg > 0? ----
      lmdeg :=minimumDegree(m,lvar)
      or/[positive? n for n in lmdeg] => simplify(m,dx,lvar,lmdeg)
                              ----  Make the polynomial square-free  ----
      om:=pushup(m,basicVar)
      sqfacs:=squareFree(om)
      lcont := pushdown(unit sqfacs,basicVar)

                                  ----  Factorize the content  ----
      if ground? lcont then
        flead:=constantCase(lcont,empty())
      else
        flead:=mFactor(lcont,dx)
      factorlist:=flead.factors
      sqqfact:List Record(factor:P,exponent:Integer)
      sqqfact:=[[pushdown(ff.factor,basicVar),ff.exponent]
                                              for ff in factors sqfacs]
                       ---  Factorize the primitive square-free terms ---
      for fact in sqqfact repeat
        ffactor:P:=fact.factor
        ffexp := fact.exponent
        ground? ffactor =>
          for lterm in constantCase(ffactor,empty()).factors repeat
            factorlist:=cons([lterm.irr,lterm.pow * ffexp], factorlist)
        lvar := variables ffactor
        x:OV:=lvar.1
        ldeg:=degree(ffactor,lvar)
             ---  Is the polynomial linear in one of the variables ? ---
        member?(1,ldeg) =>
          x:OV:=lvar.position(1,ldeg)
          lcont:= gcd coefficients(univariate(ffactor,x))
          ffactor:=(ffactor exquo lcont)::P
          factorlist:=cons([ffactor,ffexp]$MParFact,factorlist)
          for lcterm in mFactor(lcont,dx).factors repeat
           factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist)

        varch:=varChoose(ffactor,lvar,ldeg)
        um:=varch.npol


        ldeg:=ldeg.rest
        lvar:=lvar.rest
        if varch.nvar.1 ~= x then
          lvar:= varch.nvar
          x := lvar.1
          lvar:=lvar.rest
          pc:= gcd coefficients um
          if not one? pc then
            um:=(um exquo pc)::SUP P
            ffactor:=multivariate(um,x)
            for lcterm in mFactor(pc,dx).factors repeat
              factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist)
          ldeg:= degree(ffactor,lvar)

        -- should be unitNormal if unified, but for now it is easier
        lcum:F:= leadingCoefficient leadingCoefficient
                leadingCoefficient um
        if not one? lcum  then
          um:=((inv lcum)::R::P) * um
          flead.contp := (lcum::R) *flead.contp

        if ground?(leadingCoefficient um)
        then lf:= mfconst(um,dx,lvar,ldeg)
        else lf:=mfpol(um,dx,lvar,ldeg)
        auxfl:=[[multivariate(lfp,x),ffexp]$MParFact  for lfp in lf]
        factorlist:=append(factorlist,auxfl)
      flead.factors:= factorlist
      flead


    pM(lum:L SUP R) : R ==
      x := monomial(1,1)$R
      for i in 1..size()$F repeat
         p := x + (index(i::PositiveInteger)$F) ::R
         testModulus(p,lum) => return p
      for e in 2.. repeat
          p :=  (createIrreduciblePoly(e::PositiveInteger))$FFPOLY
          testModulus(p,lum) => return p
          while not((q := nextIrreduciblePoly(p)$FFPOLY) case "failed") repeat
             p := q::SUP F
             if testModulus(p, lum)$GenExEuclid(R, SUP R) then return p

      ----  push x in the coefficient domain for a term ----
    pushdcoef(t:PG):P ==
       map(coerce(#1)$R,t)$MPolyCatFunctions2(OV,E,
                                           IndexedExponents OV,F,R,PG,P)


              ----  internal function, for testing bad cases  ----
    intfact(um:SUP P,lvar: L OV,ldeg:L NNI,
            tleadpol:MFinalFact,ltry:L L R):  L SUP P ==
      polcase:Boolean:=(not empty? tleadpol.factors )
      vfchoo:Valuf:=
        polcase =>
          leadpol:L P:=[ff.irr for ff in tleadpol.factors]
          intChoose(um,lvar,tleadpol.contp,leadpol,ltry)
        intChoose(um,lvar,1,empty(),empty())
      unifact:List SUP R := vfchoo.unvfact
      nfact:NNI := #unifact
      nfact=1 => [um]
      ltry:L L R:= vfchoo.inval
      lval:L R:=first ltry
      dd:= vfchoo.lu
      lpol:List P:=empty()
      leadval:List R:=empty()
      if polcase then
        leadval := vfchoo.complead
        distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval)
        distf case "failed" =>
             return intfact(um,lvar,ldeg,tleadpol,ltry)
        dist := distf :: LeadFact
          -- check the factorization of leading coefficient
        lpol:= dist.polfac
        dd := dist.correct
        unifact:=dist.corrfact
      if not one? dd then
        unifact := [dd*unifact.i for i in 1..nfact]
        um := ((dd**(nfact-1)::NNI)::P)*um
      (ffin:= lifting(um,lvar,unifact,lval,lpol,ldeg,pM(unifact)))
           case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry)
      factfin: L SUP P:=ffin :: L SUP P
      if not one? dd then
        factfin:=[primitivePart ff  for ff in  factfin]
      factfin

-- the following functions are used to "push" x in the coefficient ring -
               ----  push back the variable  ----
    pushup(f:P,x:OV) :PG ==
       ground? f => pushupconst((retract f)@R,x)
       rr:PG:=0
       while not zero? f repeat
         lf:=leadingMonomial f
         cf:=pushupconst(leadingCoefficient f,x)
         lvf:=variables lf
         rr:=rr+monomial(cf,lvf, degree(lf,lvf))$PG
         f:=reductum f
       rr

        ----  push x in the coefficient domain for a polynomial ----
    pushdown(g:PG,x:OV) : P ==
       ground? g => ((retract g)@F)::R::P
       rf:P:=0$P
       ug:=univariate(g,x)
       while not zero? ug repeat
         cf:=monomial(1,degree ug)$R
         rf:=rf+cf*pushdcoef(leadingCoefficient ug)
         ug := reductum ug
       rf

      ----  push x back from the coefficient domain ----
    pushupconst(r:R,x:OV):PG ==
       ground? r => (retract r)@F ::PG
       rr:PG:=0
       while not zero? r repeat
         rr:=rr+monomial((leadingCoefficient r)::PG,x,degree r)$PG
         r:=reductum r
       rr

    -- This function has to be added to Eucliden domain
    ran(k1:Z) : R ==
      --if R case Integer then random()$R rem (2*k1)-k1
      --else
      +/[monomial(random()$F,i)$R for i in 0..k1]

    checkzero(u:SUP P,um:SUP R) : Boolean ==
      u=0 => um =0
      um = 0 => false
      degree u = degree um => checkzero(reductum u, reductum um)
      false

              ---  Choose the variable of least degree  ---
    varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd ==
      k:="min"/[d for d in ldeg]
      k=degree(m,first lvar) =>
                             [univariate(m,first lvar),lvar,ldeg]$NewOrd
      i:=position(k,ldeg)
      x:OV:=lvar.i
      ldeg:=cons(k,delete(ldeg,i))
      lvar:=cons(x,delete(lvar,i))
      [univariate(m,x),lvar,ldeg]$NewOrd


    norm(lum: L SUP R): Integer == "max"/[degree lup for lup in lum]

          ---  Choose the values to reduce to the univariate case  ---
    intChoose(um:SUP P,lvar:L OV,clc:R,plist:L P,ltry:L L R) : Valuf ==
      -- declarations
      degum:NNI := degree um
      nvar1:=#lvar
      range:NNI:=0
      unifact:L SUP R
      ctf1 : R := 1
      testp:Boolean :=             -- polynomial leading coefficient
        plist = empty() => false
        true
      leadcomp,leadcomp1 : L R
      leadcomp:=leadcomp1:=empty()
      nfatt:NNI := degum+1
      lffc:R:=1
      lffc1:=lffc
      newunifact : L SUP R:=empty()
      leadtest:=true --- the lc test with polCase has to be performed
      int:L R:=empty()

   --  New sets of values are chosen until we find twice the
   --  same number of "univariate" factors:the set smaller in modulo is
   --  is chosen.
      while true repeat
       lval := [ ran(range) for i in 1..nvar1]
       member?(lval,ltry) => range:=1+range
       ltry := cons(lval,ltry)
       leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
       testp and or/[unit? epl for epl in leadcomp1] => range:=range+1
       newm:SUP R:=completeEval(um,lvar,lval)
       degum ~= degree newm or not zero? minimumDegree newm => range:=range+1
       lffc1:=content newm
       newm:=(newm exquo lffc1)::SUP R
       testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
                           => range:=range+1
       Dnewm := differentiate newm
       D2newm := map(differentiate, newm)
       not zero? degree(gcd [newm,Dnewm,D2newm]) => range:=range+1
      -- if R has Integer then luniv:=henselFact(newm,false)$
      -- else
       lcnm:F:=1
        -- should be unitNormal if unified, but for now it is easier
       if not one?(lcnm:=leadingCoefficient leadingCoefficient newm) then
         newm:=((inv lcnm)::R)*newm
       dx:="max"/[degree uc  for uc in coefficients newm]
       luniv:=generalTwoFactor(newm)$TwoFactorize(F)
       lunivf:= factors luniv
       nf:= #lunivf

       nf=0 or nf>nfatt => "next values"      ---  pretest failed ---

                        --- the univariate polynomial is irreducible ---
       if nf=1 then leave (unifact:=[newm])

       lffc1:=lcnm * retract(unit luniv)@R * lffc1

   --  the new integer give the same number of factors
       nfatt = nf =>
       -- if this is the first univariate factorization with polCase=true
       -- or if the last factorization has smaller norm and satisfies
       -- polCase
         if leadtest or
           ((norm unifact > norm [ff.factor for ff in lunivf]) and
             (not testp or polCase(lffc1*clc,#plist,leadcomp1))) then
                unifact:=[uf.factor for uf in lunivf]
                int:=lval
                lffc:=lffc1
                if testp then leadcomp:=leadcomp1
         leave "foundit"

   --  the first univariate factorization, inizialize
       nfatt > degum =>
         unifact:=[uf.factor for uf in lunivf]
         lffc:=lffc1
         if testp then leadcomp:=leadcomp1
         int:=lval
         leadtest := false
         nfatt := nf

       nfatt>nf =>  -- for the previous values there were more factors
         if testp then leadtest := not polCase(lffc*clc,#plist,leadcomp)
         else leadtest:= false
         -- if polCase=true we can consider the univariate decomposition
         if not leadtest then
           unifact:=[uf.factor for uf in lunivf]
           lffc:=lffc1
           if testp then leadcomp:=leadcomp1
           int:=lval
         nfatt := nf
      [cons(int,ltry),unifact,lffc,leadcomp]$Valuf


    constantCase(m:P,factorlist:List MParFact) : MFinalFact ==
    --if R case Integer then [const m,factorlist]$MFinalFact
    --else
      lunm:=distdfact((retract m)@R,false)$DistinctDegreeFactorize(F,R)
      [(lunm.cont)::R, append(factorlist,
           [[(pp.irr)::P,pp.pow] for pp in lunm.factors])]$MFinalFact

                ----  The polynomial has mindeg>0   ----

    simplify(m:P,dm:Z,lvar:L OV,lmdeg:L NNI):MFinalFact ==
      factorlist:L MParFact:=empty()
      pol1:P:= 1$P
      for x in lvar repeat
        i := lmdeg.(position(x,lvar))
        i=0 => "next value"
        pol1:=pol1*monomial(1$P,x,i)
        factorlist:=cons([x::P,i]$MParFact,factorlist)
      m := (m exquo pol1)::P
      ground? m => constantCase(m,factorlist)
      flead:=mFactor(m,dm)
      flead.factors:=append(factorlist,flead.factors)
      flead

                ----  m square-free,primitive,lc constant  ----
    mfconst(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P ==
      nsign:Boolean
      factfin:L SUP P:=empty()
      empty? lvar =>
          um1:SUP R:=map(ground,
              um)$UPCF2(P,SUP P,R,SUP R)
          lum:= generalTwoFactor(um1)$TwoFactorize(F)
          [map(coerce,lumf.factor)$UPCF2(R,SUP R,P,SUP P)
                for lumf in factors lum]
      intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty())

              --- m is square-free,primitive,lc is a polynomial  ---
    mfpol(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P ==
      dist : LeadFact
      tleadpol:=mFactor(leadingCoefficient um,dm)
      intfact(um,lvar,ldeg,tleadpol,empty())

    factor(m:PG):Factored PG ==
       lv:=variables m
       lv=empty() => makeFR(m,empty() )
    -- reduce to multivariate over SUP
       ld:=[degree(m,x) for x in lv]
       dx:="min"/ld
       basicVar:=lv(position(dx,ld))
       cm:=pushdown(m,basicVar)
       flist := mFactor(cm,dx)
       pushupconst(flist.contp,basicVar) *
          (*/[primeFactor(pushup(u.irr,basicVar),u.pow)
                                                 for u in flist.factors])

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package MFINFACT MultFiniteFactorize>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}