\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra mfinfact.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package MFINFACT MultFiniteFactorize} <<package MFINFACT MultFiniteFactorize>>= )abbrev package MFINFACT MultFiniteFactorize ++ Author: P. Gianni ++ Date Created: Summer 1990 ++ Date Last Updated: 19 March 1992 ++ Basic Functions: ++ Related Constructors: PrimeField, FiniteField, Polynomial ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: Package for factorization of multivariate polynomials ++ over finite fields. MultFiniteFactorize(OV,E,F,PG) : C == T where F : FiniteFieldCategory OV : OrderedSet E : OrderedAbelianMonoidSup PG : PolynomialCategory(F,E,OV) SUP ==> SparseUnivariatePolynomial R ==> SUP F P ==> SparseMultivariatePolynomial(R,OV) Z ==> Integer FFPOLY ==> FiniteFieldPolynomialPackage(F) MParFact ==> Record(irr:P,pow:Z) MFinalFact ==> Record(contp:R,factors:List MParFact) SUParFact ==> Record(irr:SUP P,pow:Z) SUPFinalFact ==> Record(contp:R,factors:List SUParFact) -- contp = content, -- factors = List of irreducible factors with exponent C == with factor : PG -> Factored PG ++ factor(p) produces the complete factorization of the multivariate ++ polynomial p over a finite field. factor : SUP PG -> Factored SUP PG ++ factor(p) produces the complete factorization of the multivariate ++ polynomial p over a finite field. p is represented as a univariate ++ polynomial with multivariate coefficients over a finite field. T == add import LeadingCoefDetermination(OV,IndexedExponents OV,R,P) import MultivariateLifting(IndexedExponents OV,OV,R,P) import FactoringUtilities(IndexedExponents OV,OV,R,P) import FactoringUtilities(E,OV,F,PG) import GenExEuclid(R,SUP R) NNI ==> NonNegativeInteger L ==> List UPCF2 ==> UnivariatePolynomialCategoryFunctions2 LeadFact ==> Record(polfac:L P,correct:R,corrfact:L SUP R) ContPrim ==> Record(cont:P,prim:P) ParFact ==> Record(irr:SUP R,pow:Z) FinalFact ==> Record(contp:R,factors:L ParFact) NewOrd ==> Record(npol:SUP P,nvar:L OV,newdeg:L NNI) Valuf ==> Record(inval:L L R,unvfact:L SUP R,lu:R,complead:L R) ---- Local Functions ---- ran : Z -> R mFactor : (P,Z) -> MFinalFact supFactor : (SUP P,Z) -> SUPFinalFact mfconst : (SUP P,Z,L OV,L NNI) -> L SUP P mfpol : (SUP P,Z,L OV,L NNI) -> L SUP P varChoose : (P,L OV,L NNI) -> NewOrd simplify : (P,Z,L OV,L NNI) -> MFinalFact intChoose : (SUP P,L OV,R,L P,L L R) -> Valuf pretest : (P,NNI,L OV,L R) -> FinalFact checkzero : (SUP P,SUP R) -> Boolean pushdcoef : PG -> P pushdown : (PG,OV) -> P pushupconst : (R,OV) -> PG pushup : (P,OV) -> PG norm : L SUP R -> Integer constantCase : (P,L MParFact) -> MFinalFact pM : L SUP R -> R intfact : (SUP P,L OV,L NNI,MFinalFact,L L R) -> L SUP P basicVar:OV:=NIL$Lisp pretend OV -- variable for the basic step convertPUP(lfg:MFinalFact): SUPFinalFact == [lfg.contp,[[lff.irr ::SUP P,lff.pow]$SUParFact for lff in lfg.factors]]$SUPFinalFact supFactor(um:SUP P,dx:Z) : SUPFinalFact == degree(um)=0 => convertPUP(mFactor(ground um,dx)) lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um] lcont:SUP P lf:L SUP P flead : SUPFinalFact:=[0,empty()]$SUPFinalFact factorlist:L SUParFact :=empty() mdeg :=minimumDegree um ---- is the Mindeg > 0? ---- if positive? mdeg then f1:SUP P:=monomial(1,mdeg) um:=(um exquo f1)::SUP P factorlist:=cons([monomial(1,1),mdeg],factorlist) if degree um=0 then return lfg:=convertPUP mFactor(ground um, dx) [lfg.contp,append(factorlist,lfg.factors)] om:=map(pushup(#1,basicVar),um)$UPCF2(P,SUP P,PG,SUP PG) sqfacs:=squareFree(om) lcont:=map(pushdown(#1,basicVar),unit sqfacs)$UPCF2(PG,SUP PG,P,SUP P) ---- Factorize the content ---- if ground? lcont then flead:=convertPUP constantCase(ground lcont,empty()) else flead:=supFactor(lcont,dx) factorlist:=flead.factors ---- Make the polynomial square-free ---- sqqfact:=[[map(pushdown(#1,basicVar),ff.factor),ff.exponent] for ff in factors sqfacs] --- Factorize the primitive square-free terms --- for fact in sqqfact repeat ffactor:SUP P:=fact.irr ffexp:=fact.pow ffcont:=content ffactor coefs := coefficients ffactor ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar] if ground?(leadingCoefficient ffactor) then lf:= mfconst(ffactor,dx,lvar,ldeg) else lf:=mfpol(ffactor,dx,lvar,ldeg) auxfl:=[[lfp,ffexp]$SUParFact for lfp in lf] factorlist:=append(factorlist,auxfl) lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist] [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R, factorlist]$SUPFinalFact factor(um:SUP PG):Factored SUP PG == lv:List OV:=variables um ld:=degree(um,lv) dx:="min"/ld basicVar:=lv.position(dx,ld) cm:=map(pushdown(#1,basicVar),um)$UPCF2(PG,SUP PG,P,SUP P) flist := supFactor(cm,dx) pushupconst(flist.contp,basicVar)::SUP(PG) * (*/[primeFactor(map(pushup(#1,basicVar),u.irr)$UPCF2(P,SUP P,PG,SUP PG), u.pow) for u in flist.factors]) mFactor(m:P,dx:Z) : MFinalFact == ground?(m) => constantCase(m,empty()) lvar:L OV:= variables m lcont:P lf:L SUP P flead : MFinalFact:=[1,empty()]$MFinalFact factorlist:L MParFact :=empty() ---- is the Mindeg > 0? ---- lmdeg :=minimumDegree(m,lvar) or/[positive? n for n in lmdeg] => simplify(m,dx,lvar,lmdeg) ---- Make the polynomial square-free ---- om:=pushup(m,basicVar) sqfacs:=squareFree(om) lcont := pushdown(unit sqfacs,basicVar) ---- Factorize the content ---- if ground? lcont then flead:=constantCase(lcont,empty()) else flead:=mFactor(lcont,dx) factorlist:=flead.factors sqqfact:List Record(factor:P,exponent:Integer) sqqfact:=[[pushdown(ff.factor,basicVar),ff.exponent] for ff in factors sqfacs] --- Factorize the primitive square-free terms --- for fact in sqqfact repeat ffactor:P:=fact.factor ffexp := fact.exponent ground? ffactor => for lterm in constantCase(ffactor,empty()).factors repeat factorlist:=cons([lterm.irr,lterm.pow * ffexp], factorlist) lvar := variables ffactor x:OV:=lvar.1 ldeg:=degree(ffactor,lvar) --- Is the polynomial linear in one of the variables ? --- member?(1,ldeg) => x:OV:=lvar.position(1,ldeg) lcont:= gcd coefficients(univariate(ffactor,x)) ffactor:=(ffactor exquo lcont)::P factorlist:=cons([ffactor,ffexp]$MParFact,factorlist) for lcterm in mFactor(lcont,dx).factors repeat factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist) varch:=varChoose(ffactor,lvar,ldeg) um:=varch.npol ldeg:=ldeg.rest lvar:=lvar.rest if varch.nvar.1 ~= x then lvar:= varch.nvar x := lvar.1 lvar:=lvar.rest pc:= gcd coefficients um if not one? pc then um:=(um exquo pc)::SUP P ffactor:=multivariate(um,x) for lcterm in mFactor(pc,dx).factors repeat factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist) ldeg:= degree(ffactor,lvar) -- should be unitNormal if unified, but for now it is easier lcum:F:= leadingCoefficient leadingCoefficient leadingCoefficient um if not one? lcum then um:=((inv lcum)::R::P) * um flead.contp := (lcum::R) *flead.contp if ground?(leadingCoefficient um) then lf:= mfconst(um,dx,lvar,ldeg) else lf:=mfpol(um,dx,lvar,ldeg) auxfl:=[[multivariate(lfp,x),ffexp]$MParFact for lfp in lf] factorlist:=append(factorlist,auxfl) flead.factors:= factorlist flead pM(lum:L SUP R) : R == x := monomial(1,1)$R for i in 1..size()$F repeat p := x + (index(i::PositiveInteger)$F) ::R testModulus(p,lum) => return p for e in 2.. repeat p := (createIrreduciblePoly(e::PositiveInteger))$FFPOLY testModulus(p,lum) => return p while not((q := nextIrreduciblePoly(p)$FFPOLY) case "failed") repeat p := q::SUP F if testModulus(p, lum)$GenExEuclid(R, SUP R) then return p ---- push x in the coefficient domain for a term ---- pushdcoef(t:PG):P == map(coerce(#1)$R,t)$MPolyCatFunctions2(OV,E, IndexedExponents OV,F,R,PG,P) ---- internal function, for testing bad cases ---- intfact(um:SUP P,lvar: L OV,ldeg:L NNI, tleadpol:MFinalFact,ltry:L L R): L SUP P == polcase:Boolean:=(not empty? tleadpol.factors ) vfchoo:Valuf:= polcase => leadpol:L P:=[ff.irr for ff in tleadpol.factors] intChoose(um,lvar,tleadpol.contp,leadpol,ltry) intChoose(um,lvar,1,empty(),empty()) unifact:List SUP R := vfchoo.unvfact nfact:NNI := #unifact nfact=1 => [um] ltry:L L R:= vfchoo.inval lval:L R:=first ltry dd:= vfchoo.lu lpol:List P:=empty() leadval:List R:=empty() if polcase then leadval := vfchoo.complead distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval) distf case "failed" => return intfact(um,lvar,ldeg,tleadpol,ltry) dist := distf :: LeadFact -- check the factorization of leading coefficient lpol:= dist.polfac dd := dist.correct unifact:=dist.corrfact if not one? dd then unifact := [dd*unifact.i for i in 1..nfact] um := ((dd**(nfact-1)::NNI)::P)*um (ffin:= lifting(um,lvar,unifact,lval,lpol,ldeg,pM(unifact))) case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry) factfin: L SUP P:=ffin :: L SUP P if not one? dd then factfin:=[primitivePart ff for ff in factfin] factfin -- the following functions are used to "push" x in the coefficient ring - ---- push back the variable ---- pushup(f:P,x:OV) :PG == ground? f => pushupconst((retract f)@R,x) rr:PG:=0 while not zero? f repeat lf:=leadingMonomial f cf:=pushupconst(leadingCoefficient f,x) lvf:=variables lf rr:=rr+monomial(cf,lvf, degree(lf,lvf))$PG f:=reductum f rr ---- push x in the coefficient domain for a polynomial ---- pushdown(g:PG,x:OV) : P == ground? g => ((retract g)@F)::R::P rf:P:=0$P ug:=univariate(g,x) while not zero? ug repeat cf:=monomial(1,degree ug)$R rf:=rf+cf*pushdcoef(leadingCoefficient ug) ug := reductum ug rf ---- push x back from the coefficient domain ---- pushupconst(r:R,x:OV):PG == ground? r => (retract r)@F ::PG rr:PG:=0 while not zero? r repeat rr:=rr+monomial((leadingCoefficient r)::PG,x,degree r)$PG r:=reductum r rr -- This function has to be added to Eucliden domain ran(k1:Z) : R == --if R case Integer then random()$R rem (2*k1)-k1 --else +/[monomial(random()$F,i)$R for i in 0..k1] checkzero(u:SUP P,um:SUP R) : Boolean == u=0 => um =0 um = 0 => false degree u = degree um => checkzero(reductum u, reductum um) false --- Choose the variable of least degree --- varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd == k:="min"/[d for d in ldeg] k=degree(m,first lvar) => [univariate(m,first lvar),lvar,ldeg]$NewOrd i:=position(k,ldeg) x:OV:=lvar.i ldeg:=cons(k,delete(ldeg,i)) lvar:=cons(x,delete(lvar,i)) [univariate(m,x),lvar,ldeg]$NewOrd norm(lum: L SUP R): Integer == "max"/[degree lup for lup in lum] --- Choose the values to reduce to the univariate case --- intChoose(um:SUP P,lvar:L OV,clc:R,plist:L P,ltry:L L R) : Valuf == -- declarations degum:NNI := degree um nvar1:=#lvar range:NNI:=0 unifact:L SUP R ctf1 : R := 1 testp:Boolean := -- polynomial leading coefficient plist = empty() => false true leadcomp,leadcomp1 : L R leadcomp:=leadcomp1:=empty() nfatt:NNI := degum+1 lffc:R:=1 lffc1:=lffc newunifact : L SUP R:=empty() leadtest:=true --- the lc test with polCase has to be performed int:L R:=empty() -- New sets of values are chosen until we find twice the -- same number of "univariate" factors:the set smaller in modulo is -- is chosen. while true repeat lval := [ ran(range) for i in 1..nvar1] member?(lval,ltry) => range:=1+range ltry := cons(lval,ltry) leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist] testp and or/[unit? epl for epl in leadcomp1] => range:=range+1 newm:SUP R:=completeEval(um,lvar,lval) degum ~= degree newm or not zero? minimumDegree newm => range:=range+1 lffc1:=content newm newm:=(newm exquo lffc1)::SUP R testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1) => range:=range+1 Dnewm := differentiate newm D2newm := map(differentiate, newm) not zero? degree(gcd [newm,Dnewm,D2newm]) => range:=range+1 -- if R has Integer then luniv:=henselFact(newm,false)$ -- else lcnm:F:=1 -- should be unitNormal if unified, but for now it is easier if not one?(lcnm:=leadingCoefficient leadingCoefficient newm) then newm:=((inv lcnm)::R)*newm dx:="max"/[degree uc for uc in coefficients newm] luniv:=generalTwoFactor(newm)$TwoFactorize(F) lunivf:= factors luniv nf:= #lunivf nf=0 or nf>nfatt => "next values" --- pretest failed --- --- the univariate polynomial is irreducible --- if nf=1 then leave (unifact:=[newm]) lffc1:=lcnm * retract(unit luniv)@R * lffc1 -- the new integer give the same number of factors nfatt = nf => -- if this is the first univariate factorization with polCase=true -- or if the last factorization has smaller norm and satisfies -- polCase if leadtest or ((norm unifact > norm [ff.factor for ff in lunivf]) and (not testp or polCase(lffc1*clc,#plist,leadcomp1))) then unifact:=[uf.factor for uf in lunivf] int:=lval lffc:=lffc1 if testp then leadcomp:=leadcomp1 leave "foundit" -- the first univariate factorization, inizialize nfatt > degum => unifact:=[uf.factor for uf in lunivf] lffc:=lffc1 if testp then leadcomp:=leadcomp1 int:=lval leadtest := false nfatt := nf nfatt>nf => -- for the previous values there were more factors if testp then leadtest := not polCase(lffc*clc,#plist,leadcomp) else leadtest:= false -- if polCase=true we can consider the univariate decomposition if not leadtest then unifact:=[uf.factor for uf in lunivf] lffc:=lffc1 if testp then leadcomp:=leadcomp1 int:=lval nfatt := nf [cons(int,ltry),unifact,lffc,leadcomp]$Valuf constantCase(m:P,factorlist:List MParFact) : MFinalFact == --if R case Integer then [const m,factorlist]$MFinalFact --else lunm:=distdfact((retract m)@R,false)$DistinctDegreeFactorize(F,R) [(lunm.cont)::R, append(factorlist, [[(pp.irr)::P,pp.pow] for pp in lunm.factors])]$MFinalFact ---- The polynomial has mindeg>0 ---- simplify(m:P,dm:Z,lvar:L OV,lmdeg:L NNI):MFinalFact == factorlist:L MParFact:=empty() pol1:P:= 1$P for x in lvar repeat i := lmdeg.(position(x,lvar)) i=0 => "next value" pol1:=pol1*monomial(1$P,x,i) factorlist:=cons([x::P,i]$MParFact,factorlist) m := (m exquo pol1)::P ground? m => constantCase(m,factorlist) flead:=mFactor(m,dm) flead.factors:=append(factorlist,flead.factors) flead ---- m square-free,primitive,lc constant ---- mfconst(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P == nsign:Boolean factfin:L SUP P:=empty() empty? lvar => um1:SUP R:=map(ground, um)$UPCF2(P,SUP P,R,SUP R) lum:= generalTwoFactor(um1)$TwoFactorize(F) [map(coerce,lumf.factor)$UPCF2(R,SUP R,P,SUP P) for lumf in factors lum] intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty()) --- m is square-free,primitive,lc is a polynomial --- mfpol(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P == dist : LeadFact tleadpol:=mFactor(leadingCoefficient um,dm) intfact(um,lvar,ldeg,tleadpol,empty()) factor(m:PG):Factored PG == lv:=variables m lv=empty() => makeFR(m,empty() ) -- reduce to multivariate over SUP ld:=[degree(m,x) for x in lv] dx:="min"/ld basicVar:=lv(position(dx,ld)) cm:=pushdown(m,basicVar) flist := mFactor(cm,dx) pushupconst(flist.contp,basicVar) * (*/[primeFactor(pushup(u.irr,basicVar),u.pow) for u in flist.factors]) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package MFINFACT MultFiniteFactorize>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}