\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra matfuns.spad}
\author{Clifton J. Williamson, Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package IMATLIN InnerMatrixLinearAlgebraFunctions}
<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>=
)abbrev package IMATLIN InnerMatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: September 1993
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++   \spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package
++   which provides standard linear algebra functions on domains in
++   \spad{MatrixCategory}
InnerMatrixLinearAlgebraFunctions(R,Row,Col,M):_
             Exports == Implementation where
  R   : Field
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)
  I ==> Integer

  Exports ==> with
    rowEchelon: M -> M
      ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
    rank: M -> NonNegativeInteger
      ++ \spad{rank(m)} returns the rank of the matrix m.
    nullity: M -> NonNegativeInteger
      ++ \spad{nullity(m)} returns the mullity of the matrix m. This is the
      ++ dimension of the null space of the matrix m.
    if Col has shallowlyMutable then
      nullSpace: M -> List Col
        ++ \spad{nullSpace(m)} returns a basis for the null space of the
        ++ matrix m.
    determinant: M -> R
      ++ \spad{determinant(m)} returns the determinant of the matrix m.
      ++ an error message is returned if the matrix is not square.
    generalizedInverse: M -> M
      ++ \spad{generalizedInverse(m)} returns the generalized (Moore--Penrose)
      ++ inverse of the matrix m, i.e. the matrix h such that
      ++ m*h*m=h, h*m*h=m, m*h and h*m are both symmetric matrices.
    inverse: M -> Union(M,"failed")
      ++ \spad{inverse(m)} returns the inverse of the matrix m.
      ++ If the matrix is not invertible, "failed" is returned.
      ++ Error: if the matrix is not square.

  Implementation ==> add

    rowAllZeroes?: (M,I) -> Boolean
    rowAllZeroes?(x,i) ==
      -- determines if the ith row of x consists only of zeroes
      -- internal function: no check on index i
      for j in minColIndex(x)..maxColIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    colAllZeroes?: (M,I) -> Boolean
    colAllZeroes?(x,j) ==
      -- determines if the ith column of x consists only of zeroes
      -- internal function: no check on index j
      for i in minRowIndex(x)..maxRowIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    rowEchelon y ==
      -- row echelon form via Gaussian elimination
      x := copy y
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      i := minR
      n: I := minR - 1
      for j in minC..maxC repeat
        i > maxR => return x
        n := minR - 1
        -- n = smallest k such that k >= i and x(k,j) ~= 0
        for k in i..maxR repeat
          if qelt(x,k,j) ~= 0 then leave (n := k)
        n = minR - 1 => "no non-zeroes"
        -- put nth row in ith position
        if i ~= n then swapRows!(x,i,n)
        -- divide ith row by its first non-zero entry
        b := inv qelt(x,i,j)
        qsetelt!(x,i,j,1)
        for k in (j+1)..maxC repeat qsetelt!(x,i,k,b * qelt(x,i,k))
        -- perform row operations so that jth column has only one 1
        for k in minR..maxR repeat
          if k ~= i and qelt(x,k,j) ~= 0 then
            for k1 in (j+1)..maxC repeat
              qsetelt!(x,k,k1,qelt(x,k,k1) - qelt(x,k,j) * qelt(x,i,k1))
            qsetelt!(x,k,j,0)
        -- increment i
        i := i + 1
      x

    rank x ==
      rk := nrows x
      y :=
        rh := ncols x
        rk > rh  =>
          rk := rh
          transpose x
        copy x
      y := rowEchelon y; i := maxRowIndex y
      while positive? rk and rowAllZeroes?(y,i) repeat
        i := i - 1
        rk := (rk - 1) :: NonNegativeInteger
      rk :: NonNegativeInteger

    nullity x == (ncols x - rank x) :: NonNegativeInteger

    if Col has shallowlyMutable then

      nullSpace y ==
        x := rowEchelon y
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := maxColIndex x
        nrow := nrows x; ncol := ncols x
        basis : List Col := nil()
        rk := nrow; row := maxR
        -- compute rank = # rows - # rows of all zeroes
        while positive? rk and rowAllZeroes?(x,row) repeat
          rk := (rk - 1) :: NonNegativeInteger
          row := (row - 1) :: NonNegativeInteger
        -- if maximal rank, return zero vector
        ncol <= nrow and rk = ncol => [new(ncol,0)]
        -- if rank = 0, return standard basis vectors
        rk = 0 =>
          for j in minC..maxC repeat
            w : Col := new(ncol,0)
            qsetelt!(w,j,1)
            basis := cons(w,basis)
          basis
        -- v contains information about initial 1's in the rows of x
        -- if the ith row has an initial 1 in the jth column, then
        -- v.j = i; v.j = minR - 1, otherwise
        v : IndexedOneDimensionalArray(I,minC) := new(ncol,minR - 1)
        j : Integer
        for i in minR..(minR + rk - 1) repeat
          for j: free in minC.. while qelt(x,i,j) = 0 repeat j
          qsetelt!(v,j,i)
        j := maxC; l := minR + ncol - 1
        while j >= minC repeat
          w : Col := new(ncol,0)
          -- if there is no row with an initial 1 in the jth column,
          -- create a basis vector with a 1 in the jth row
          if qelt(v,j) = minR - 1 then
            colAllZeroes?(x,j) =>
              qsetelt!(w,l,1)
              basis := cons(w,basis)
            for k in minC..(j-1) for ll in minR..(l-1) repeat
              if qelt(v,k) ~= minR - 1 then
                qsetelt!(w,ll,-qelt(x,qelt(v,k),j))
            qsetelt!(w,l,1)
            basis := cons(w,basis)
          j := j - 1; l := l - 1
        basis

    determinant y ==
      (ndim := nrows y) ~= (ncols y) =>
        error "determinant: matrix must be square"
      -- Gaussian Elimination
      ndim = 1 => qelt(y,minRowIndex y,minColIndex y)
      x := copy y
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      ans : R := 1
      for i in minR..(maxR - 1) for j in minC..(maxC - 1) repeat
        if qelt(x,i,j) = 0 then
          rown := minR - 1
          for k in (i+1)..maxR repeat
            qelt(x,k,j) ~= 0 => leave (rown := k)
          if rown = minR - 1 then return 0
          swapRows!(x,i,rown); ans := -ans
        ans := qelt(x,i,j) * ans; b := -inv qelt(x,i,j)
        for l in (j+1)..maxC repeat qsetelt!(x,i,l,b * qelt(x,i,l))
        for k: local in (i+1)..maxR repeat
          if (b := qelt(x,k,j)) ~= 0 then
            for l in (j+1)..maxC repeat
              qsetelt!(x,k,l,qelt(x,k,l) + b * qelt(x,i,l))
      qelt(x,maxR,maxC) * ans

    generalizedInverse(x) ==
      SUP:=SparseUnivariatePolynomial R
      FSUP := Fraction SUP
      VFSUP := Vector FSUP
      MATCAT2 := MatrixCategoryFunctions2(R, Row, Col, M,
                   FSUP, VFSUP, VFSUP, Matrix FSUP)
      MATCAT22 := MatrixCategoryFunctions2(FSUP, VFSUP, VFSUP, Matrix FSUP,
                   R, Row, Col, M)
      y:= map(coerce(coerce(#1)$SUP)$(Fraction SUP),x)$MATCAT2
      ty:=transpose y
      yy:=ty*y
      nc:=ncols yy
      var:=monomial(1,1)$SUP ::(Fraction SUP)
      yy:=inverse(yy+scalarMatrix(ncols yy,var))::Matrix(FSUP)*ty
      map(elt(#1,0),yy)$MATCAT22

    inverse x ==
      (ndim := nrows x) ~= (ncols x) =>
        error "inverse: matrix must be square"
      ndim = 2 =>
         ans2 : M := zero(ndim, ndim)
         zero?(det :=  x(1,1)*x(2,2)-x(1,2)*x(2,1)) => "failed"
         detinv := inv det
         ans2(1,1) := x(2,2)*detinv
         ans2(1,2) := -x(1,2)*detinv
         ans2(2,1) := -x(2,1)*detinv
         ans2(2,2) := x(1,1)*detinv
         ans2
      AB : M := zero(ndim,ndim + ndim)
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      kmin := minRowIndex AB; kmax := kmin + ndim - 1
      lmin := minColIndex AB; lmax := lmin + ndim - 1
      for i in minR..maxR for k in kmin..kmax repeat
        for j in minC..maxC for l in lmin..lmax repeat
          qsetelt!(AB,k,l,qelt(x,i,j))
        qsetelt!(AB,k,lmin + ndim + k - kmin,1)
      AB := rowEchelon AB
      elt(AB,kmax,lmax) = 0 => "failed"
      subMatrix(AB,kmin,kmax,lmin + ndim,lmax + ndim)

@
\section{package MATCAT2 MatrixCategoryFunctions2}
<<package MATCAT2 MatrixCategoryFunctions2>>=
)abbrev package MATCAT2 MatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 21 March 1994
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++   \spadtype{MatrixCategoryFunctions2} provides functions between two matrix
++   domains.  The functions provided are \spadfun{map} and \spadfun{reduce}.
MatrixCategoryFunctions2(R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
         Exports == Implementation where
  R1   : Ring
  Row1 : FiniteLinearAggregate R1
  Col1 : FiniteLinearAggregate R1
  M1   : MatrixCategory(R1,Row1,Col1)
  R2   : Ring
  Row2 : FiniteLinearAggregate R2
  Col2 : FiniteLinearAggregate R2
  M2   : MatrixCategory(R2,Row2,Col2)

  Exports ==> with
    map: (R1 -> R2,M1) -> M2
      ++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
    map: (R1 -> Union(R2,"failed"),M1) -> Union(M2,"failed")
      ++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
    reduce: ((R1,R2) -> R2,M1,R2) -> R2
      ++ \spad{reduce(f,m,r)} returns a matrix n where
      ++ \spad{n[i,j] = f(m[i,j],r)} for all indices i and j.

  Implementation ==> add
    minr ==> minRowIndex
    maxr ==> maxRowIndex
    minc ==> minColIndex
    maxc ==> maxColIndex

    map(f:(R1->R2),m:M1):M2 ==
      ans : M2 := new(nrows m,ncols m,0)
      for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
        for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
          qsetelt!(ans,k,l,f qelt(m,i,j))
      ans

    map(f:(R1 -> (Union(R2,"failed"))),m:M1):Union(M2,"failed") ==
      ans : M2 := new(nrows m,ncols m,0)
      for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
        for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
          (r := f qelt(m,i,j)) = "failed" => return "failed"
          qsetelt!(ans,k,l,r::R2)
      ans

    reduce(f,m,ident) ==
      s := ident
      for i in minr(m)..maxr(m) repeat
       for j in minc(m)..maxc(m) repeat
         s := f(qelt(m,i,j),s)
      s

@
\section{package RMCAT2 RectangularMatrixCategoryFunctions2}
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>=
)abbrev package RMCAT2 RectangularMatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 12 June 1991
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++ \spadtype{RectangularMatrixCategoryFunctions2} provides functions between
++ two matrix domains.  The functions provided are \spadfun{map} and \spadfun{reduce}.

RectangularMatrixCategoryFunctions2(m,n,R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
         Exports == Implementation where
  m,n  : NonNegativeInteger
  R1   : Ring
  Row1 : DirectProductCategory(n, R1)
  Col1 : DirectProductCategory(m, R1)
  M1   : RectangularMatrixCategory(m,n,R1,Row1,Col1)
  R2   : Ring
  Row2 : DirectProductCategory(n, R2)
  Col2 : DirectProductCategory(m, R2)
  M2   : RectangularMatrixCategory(m,n,R2,Row2,Col2)

  Exports ==> with
    map: (R1 -> R2,M1) -> M2
      ++ \spad{map(f,m)} applies the function \spad{f} to the elements of the
      ++ matrix \spad{m}.
    reduce: ((R1,R2) -> R2,M1,R2) -> R2
      ++ \spad{reduce(f,m,r)} returns a matrix \spad{n} where
      ++ \spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \spad{j}.

  Implementation ==> add
    minr ==> minRowIndex
    maxr ==> maxRowIndex
    minc ==> minColIndex
    maxc ==> maxColIndex

    map(f,mat) ==
      ans : M2 := new(m,n,0)$Matrix(R2) pretend M2
      for i in minr(mat)..maxr(mat) for k in minr(ans)..maxr(ans) repeat
        for j in minc(mat)..maxc(mat) for l in minc(ans)..maxc(ans) repeat
          qsetelt!(ans pretend Matrix R2,k,l,f qelt(mat,i,j))
      ans

    reduce(f,mat,ident) ==
      s := ident
      for i in minr(mat)..maxr(mat) repeat
       for j in minc(mat)..maxc(mat) repeat
         s := f(qelt(mat,i,j),s)
      s

@
\section{package IMATQF InnerMatrixQuotientFieldFunctions}
<<package IMATQF InnerMatrixQuotientFieldFunctions>>=
)abbrev package IMATQF InnerMatrixQuotientFieldFunctions
++ Author: Clifton J. Williamson
++ Date Created: 22 November 1989
++ Date Last Updated: 22 November 1989
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, inverse, integral domain
++ Examples:
++ References:
++ Description:
++   \spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices
++   over an integral domain which involve the quotient field of that integral
++   domain.  The functions rowEchelon and inverse return matrices with
++   entries in the quotient field.
InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2):_
         Exports == Implementation where
  R    : IntegralDomain
  Row  : FiniteLinearAggregate R
  Col  : FiniteLinearAggregate R
  M    : MatrixCategory(R,Row,Col)
  QF   : QuotientFieldCategory R
  Row2 : FiniteLinearAggregate QF
  Col2 : FiniteLinearAggregate QF
  M2   : MatrixCategory(QF,Row2,Col2)
  IMATLIN ==> InnerMatrixLinearAlgebraFunctions(QF,Row2,Col2,M2)
  MATCAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
  CDEN    ==> InnerCommonDenominator(R,QF,Col,Col2)

  Exports ==> with
      rowEchelon: M -> M2
        ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
        ++ the result will have entries in the quotient field.
      inverse: M -> Union(M2,"failed")
        ++ \spad{inverse(m)} returns the inverse of the matrix m.
        ++ If the matrix is not invertible, "failed" is returned.
        ++ Error: if the matrix is not square.
        ++ Note: the result will have entries in the quotient field.
      if Col2 has shallowlyMutable then
        nullSpace : M -> List Col
          ++ \spad{nullSpace(m)} returns a basis for the null space of the
          ++ matrix m.
  Implementation ==> add

    qfMat: M -> M2
    qfMat m == map(#1 :: QF,m)$MATCAT2

    rowEchelon m == rowEchelon(qfMat m)$IMATLIN
    inverse m ==
      (inv := inverse(qfMat m)$IMATLIN) case "failed" => "failed"
      inv :: M2

    if Col2 has shallowlyMutable then
      nullSpace m ==
        [clearDenominator(v)$CDEN for v in nullSpace(qfMat m)$IMATLIN]

@
\section{package MATLIN MatrixLinearAlgebraFunctions}
<<package MATLIN MatrixLinearAlgebraFunctions>>=
)abbrev package MATLIN MatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: December 1992
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++   \spadtype{MatrixLinearAlgebraFunctions} provides functions to compute
++   inverses and canonical forms.
MatrixLinearAlgebraFunctions(R,Row,Col,M):Exports == Implementation where
  R   : CommutativeRing
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)
  I ==> Integer

  Exports ==> with

    determinant: M -> R
      ++ \spad{determinant(m)} returns the determinant of the matrix m.
      ++ an error message is returned if the matrix is not square.
    minordet: M -> R
      ++ \spad{minordet(m)} computes the determinant of the matrix m using
      ++ minors. Error: if the matrix is not square.
    elRow1!       :   (M,I,I)         ->  M
      ++ elRow1!(m,i,j) swaps rows i and j of matrix m : elementary operation
      ++ of first kind
    elRow2!       :  (M,R,I,I)        ->  M
      ++ elRow2!(m,a,i,j)  adds to row i a*row(m,j) : elementary operation of
      ++ second kind. (i ~=j)
    elColumn2!    :  (M,R,I,I)        ->  M
      ++ elColumn2!(m,a,i,j)  adds to column i a*column(m,j) : elementary
      ++ operation of second kind. (i ~=j)

    if R has IntegralDomain then
      rank: M -> NonNegativeInteger
        ++ \spad{rank(m)} returns the rank of the matrix m.
      nullity: M -> NonNegativeInteger
        ++ \spad{nullity(m)} returns the mullity of the matrix m. This is
        ++ the dimension of the null space of the matrix m.
      nullSpace: M -> List Col
        ++ \spad{nullSpace(m)} returns a basis for the null space of the
        ++ matrix m.
      fractionFreeGauss! : M -> M
        ++ \spad{fractionFreeGauss(m)} performs the fraction
        ++ free gaussian  elimination on the matrix m.
      invertIfCan : M -> Union(M,"failed")
        ++ \spad{invertIfCan(m)} returns the inverse of m over R
      adjoint : M -> Record(adjMat:M, detMat:R)
        ++ \spad{adjoint(m)} returns the ajoint matrix of m (i.e. the matrix
        ++ n such that m*n = determinant(m)*id) and the detrminant of m.

    if R has EuclideanDomain then
      rowEchelon: M -> M
        ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.

      normalizedDivide: (R, R) -> Record(quotient:R, remainder:R)
        ++ normalizedDivide(n,d) returns a normalized quotient and
        ++ remainder such that consistently unique representatives
        ++ for the residue class are chosen, e.g. positive remainders

    if R has Field then
      inverse: M -> Union(M,"failed")
        ++ \spad{inverse(m)} returns the inverse of the matrix.
        ++ If the matrix is not invertible, "failed" is returned.
        ++ Error: if the matrix is not square.

  Implementation ==> add

    rowAllZeroes?: (M,I) -> Boolean
    rowAllZeroes?(x,i) ==
      -- determines if the ith row of x consists only of zeroes
      -- internal function: no check on index i
      for j in minColIndex(x)..maxColIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    colAllZeroes?: (M,I) -> Boolean
    colAllZeroes?(x,j) ==
      -- determines if the ith column of x consists only of zeroes
      -- internal function: no check on index j
      for i in minRowIndex(x)..maxRowIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    minorDet:(M,I,List I,I,PrimitiveArray(Union(R,"uncomputed")))-> R
    minorDet(x,m,l,i,v) ==
      z := v.m
      z case R => z
      ans : R := 0; rl : List I := nil()
      j := first l; l := rest l; pos := true
      minR := minRowIndex x; minC := minColIndex x;
      repeat
        if qelt(x,j + minR,i + minC) ~= 0 then
          ans :=
            md := minorDet(x,m - 2**(j :: NonNegativeInteger),_
                           concat!(reverse rl,l),i + 1,v) *_
                           qelt(x,j + minR,i + minC)
            pos => ans + md
            ans - md
        null l =>
          v.m := ans
          return ans
        pos := not pos; rl := cons(j,rl); j := first l; l := rest l

    minordet x ==
      (ndim := nrows x) ~= (ncols x) =>
        error "determinant: matrix must be square"
      -- minor expansion with (s---loads of) memory
      n1 : I := ndim - 1
      v : PrimitiveArray(Union(R,"uncomputed")) :=
           new((2**ndim - 1) :: NonNegativeInteger,"uncomputed")
      minR := minRowIndex x; maxC := maxColIndex x
      for i in 0..n1 repeat
        qsetelt!(v,(2**i - 1),qelt(x,i + minR,maxC))
      minorDet(x, 2**ndim - 2, [i for i in 0..n1], 0, v)

       -- elementary operation of first kind: exchange two rows --
    elRow1!(m:M,i:I,j:I) : M ==
      vec:=row(m,i)
      setRow!(m,i,row(m,j))
      setRow!(m,j,vec)
      m

             -- elementary operation of second kind: add to row i--
                         -- a*row j  (i~=j) --
    elRow2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,row(m,j))
      vec:=map("+",row(m,i),vec)
      setRow!(m,i,vec)
      m
             -- elementary operation of second kind: add to column i --
                           -- a*column j (i~=j) --
    elColumn2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,column(m,j))
      vec:=map("+",column(m,i),vec)
      setColumn!(m,i,vec)
      m

    if R has IntegralDomain then
      -- Fraction-Free Gaussian Elimination
      fractionFreeGauss! x  ==
        (ndim := nrows x) = 1 => x
        ans := b := 1$R
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := maxColIndex x
        i := minR
        for j in minC..maxC repeat
          if qelt(x,i,j) = 0 then -- candidate for pivot = 0
            rown := minR - 1
            for k in (i+1)..maxR repeat
              if qelt(x,k,j) ~= 0 then
                 rown := k -- found a pivot
                 leave
            if rown > minR - 1 then
               swapRows!(x,i,rown)
               ans := -ans
          (c := qelt(x,i,j)) = 0 =>  "next j" -- try next column
          for k: local in (i+1)..maxR repeat
            if qelt(x,k,j) = 0 then
              for l in (j+1)..maxC repeat
                qsetelt!(x,k,l,(c * qelt(x,k,l) exquo b) :: R)
            else
              pv := qelt(x,k,j)
              qsetelt!(x,k,j,0)
              for l in (j+1)..maxC repeat
                val := c * qelt(x,k,l) - pv * qelt(x,i,l)
                qsetelt!(x,k,l,(val exquo b) :: R)
          b := c
          (i := i+1)>maxR => leave
        if ans=-1 then
          lasti := i-1
          for j in 1..maxC repeat x(lasti, j) := -x(lasti,j)
        x

      --
      lastStep(x:M)  : M ==
        ndim := nrows x
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := minC+ndim -1
        exCol:=maxColIndex x
        det:=x(maxR,maxC)
        maxR1:=maxR-1
        maxC1:=maxC+1
        minC1:=minC+1
        iRow:=maxR
        iCol:=maxC-1
        for i in maxR1..1 by -1 repeat
          for j in maxC1..exCol repeat
            ss:=+/[x(i,iCol+k)*x(i+k,j) for k in 1..(maxR-i)]
            x(i,j) := _exquo((det * x(i,j) - ss),x(i,iCol))::R
          iCol:=iCol-1
        subMatrix(x,minR,maxR,maxC1,exCol)

      invertIfCan(y) ==
        (nr:=nrows y) ~= (ncols y) =>
            error "invertIfCan: matrix must be square"
        adjRec := adjoint y
        (den:=recip(adjRec.detMat)) case "failed" => "failed"
        den::R * adjRec.adjMat

      adjoint(y) ==
        (nr:=nrows y) ~= (ncols y) => error "adjoint: matrix must be square"
        maxR := maxRowIndex y
        maxC := maxColIndex y
        x := horizConcat(copy y,scalarMatrix(nr,1$R))
        ffr:= fractionFreeGauss!(x)
        det:=ffr(maxR,maxC)
        [lastStep(ffr),det]


    if R has Field then

      VR      ==> Vector R
      IMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,Row,Col,M)
      MMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,VR,VR,Matrix R)
      FLA2    ==> FiniteLinearAggregateFunctions2(R, VR, R, Col)
      MAT2    ==> MatrixCategoryFunctions2(R,Row,Col,M,R,VR,VR,Matrix R)

      rowEchelon  y == rowEchelon(y)$IMATLIN
      rank        y == rank(y)$IMATLIN
      nullity     y == nullity(y)$IMATLIN
      determinant y == determinant(y)$IMATLIN
      inverse     y == inverse(y)$IMATLIN
      if Col has shallowlyMutable then
        nullSpace y == nullSpace(y)$IMATLIN
      else
        nullSpace y ==
          [map(#1, v)$FLA2 for v in nullSpace(map(#1, y)$MAT2)$MMATLIN]

    else if R has IntegralDomain then
      QF      ==> Fraction R
      Row2    ==> Vector QF
      Col2    ==> Vector QF
      M2      ==> Matrix QF
      IMATQF  ==> InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2)

      nullSpace m == nullSpace(m)$IMATQF

      determinant y ==
        (nrows y) ~= (ncols y) => error "determinant: matrix must be square"
        fm:=fractionFreeGauss!(copy y)
        fm(maxRowIndex fm,maxColIndex fm)

      rank x ==
        rk := nrows x
        y :=
          rh := ncols x
          rk > rh =>
              rk := rh
              transpose x
          copy x
        y := fractionFreeGauss! y
        i := maxRowIndex y
        while positive? rk and rowAllZeroes?(y,i) repeat
          i := i - 1
          rk := (rk - 1) :: NonNegativeInteger
        rk :: NonNegativeInteger

      nullity x == (ncols x - rank x) :: NonNegativeInteger

      if R has EuclideanDomain then

        if R has IntegerNumberSystem then
            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               qr := divide(n, d)
               qr.remainder >= 0 => qr
               positive? d =>
                  qr.remainder := qr.remainder + d
                  qr.quotient := qr.quotient - 1
                  qr
               qr.remainder := qr.remainder - d
               qr.quotient := qr.quotient + 1
               qr
        else
            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               divide(n, d)

        rowEchelon y ==
          x := copy y
          minR := minRowIndex x; maxR := maxRowIndex x
          minC := minColIndex x; maxC := maxColIndex x
          n := minR - 1
          i := minR
          for j in minC..maxC repeat
            if i > maxR then leave x
            n := minR - 1
            xnj: R
            for k in i..maxR repeat
              if not zero?(xkj:=qelt(x,k,j)) and ((n = minR - 1) _
                     or sizeLess?(xkj,xnj)) then
                n := k
                xnj := xkj
            n = minR - 1 => "next j"
            swapRows!(x,i,n)
            for k in (i+1)..maxR repeat
              qelt(x,k,j) = 0 => "next k"
              aa := extendedEuclidean(qelt(x,i,j),qelt(x,k,j))
              (a,b,d) := (aa.coef1,aa.coef2,aa.generator)
              b1 := (qelt(x,i,j) exquo d) :: R
              a1 := (qelt(x,k,j) exquo d) :: R
              -- a*b1+a1*b = 1
              for k1 in (j+1)..maxC repeat
                val1 := a * qelt(x,i,k1) + b * qelt(x,k,k1)
                val2 := -a1 * qelt(x,i,k1) + b1 * qelt(x,k,k1)
                qsetelt!(x,i,k1,val1); qsetelt!(x,k,k1,val2)
              qsetelt!(x,i,j,d); qsetelt!(x,k,j,0)

            un := unitNormal qelt(x,i,j)
            qsetelt!(x,i,j,un.canonical)
            if not one?(un.associate) then for jj in (j+1)..maxC repeat
                qsetelt!(x,i,jj,un.associate * qelt(x,i,jj))

            xij := qelt(x,i,j)
            for k in minR..(i-1) repeat
              qelt(x,k,j) = 0 => "next k"
              qr := normalizedDivide(qelt(x,k,j), xij)
              qsetelt!(x,k,j,qr.remainder)
              for k1 in (j+1)..maxC repeat
                qsetelt!(x,k,k1,qelt(x,k,k1) - qr.quotient * qelt(x,i,k1))
            i := i + 1
          x

    else determinant x == minordet x

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- This file and MATRIX SPAD must be compiled in bootstrap mode.

<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>
<<package MATCAT2 MatrixCategoryFunctions2>>
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>
<<package IMATQF InnerMatrixQuotientFieldFunctions>>
<<package MATLIN MatrixLinearAlgebraFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}