\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra matcat.spad} \author{Johannes Grabmeier, Oswald Gschnitzer, Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category MATCAT MatrixCategory} <<category MATCAT MatrixCategory>>= )abbrev category MATCAT MatrixCategory ++ Authors: Grabmeier, Gschnitzer, Williamson ++ Date Created: 1987 ++ Date Last Updated: July 1990 ++ Basic Operations: ++ Related Domains: Matrix(R) ++ Also See: ++ AMS Classifications: ++ Keywords: matrix, linear algebra ++ Examples: ++ References: ++ Description: ++ \spadtype{MatrixCategory} is a general matrix category which allows ++ different representations and indexing schemes. Rows and ++ columns may be extracted with rows returned as objects of ++ type Row and colums returned as objects of type Col. ++ A domain belonging to this category will be shallowly mutable. ++ The index of the 'first' row may be obtained by calling the ++ function \spadfun{minRowIndex}. The index of the 'first' column may ++ be obtained by calling the function \spadfun{minColIndex}. The index of ++ the first element of a Row is the same as the index of the ++ first column in a matrix and vice versa. MatrixCategory(R,Row,Col): Category == Definition where R : Ring Row : FiniteLinearAggregate R Col : FiniteLinearAggregate R macro NNI == NonNegativeInteger macro I == Integer Definition ==> TwoDimensionalArrayCategory(R,Row,Col) with shallowlyMutable ++ One may destructively alter matrices finiteAggregate ++ matrices are finite --% Predicates square? : % -> Boolean ++ \spad{square?(m)} returns true if m is a square matrix ++ (i.e. if m has the same number of rows as columns) and false otherwise. diagonal?: % -> Boolean ++ \spad{diagonal?(m)} returns true if the matrix m is square and ++ diagonal (i.e. all entries of m not on the diagonal are zero) and ++ false otherwise. symmetric?: % -> Boolean ++ \spad{symmetric?(m)} returns true if the matrix m is square and ++ symmetric (i.e. \spad{m[i,j] = m[j,i]} for all i and j) and false ++ otherwise. antisymmetric?: % -> Boolean ++ \spad{antisymmetric?(m)} returns true if the matrix m is square and ++ antisymmetric (i.e. \spad{m[i,j] = -m[j,i]} for all i and j) and false ++ otherwise. --% Creation zero: (NonNegativeInteger,NonNegativeInteger) -> % ++ \spad{zero(m,n)} returns an m-by-n zero matrix. matrix: List List R -> % ++ \spad{matrix(l)} converts the list of lists l to a matrix, where the ++ list of lists is viewed as a list of the rows of the matrix. matrix: (NNI, NNI, (I,I) -> R) -> % ++ \spad{matrix(n,m,f)} construcys and \spad{n * m} matrix with ++ the \spad{(i,j)} entry equal to \spad{f(i,j)}. scalarMatrix: (NonNegativeInteger,R) -> % ++ \spad{scalarMatrix(n,r)} returns an n-by-n matrix with r's on the ++ diagonal and zeroes elsewhere. diagonalMatrix: List R -> % ++ \spad{diagonalMatrix(l)} returns a diagonal matrix with the elements ++ of l on the diagonal. diagonalMatrix: List % -> % ++ \spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix ++ M with block matrices {\em m1},...,{\em mk} down the diagonal, ++ with 0 block matrices elsewhere. ++ More precisly: if \spad{ri := nrows mi}, \spad{ci := ncols mi}, ++ then m is an (r1+..+rk) by (c1+..+ck) - matrix with entries ++ \spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if ++ \spad{(r1+..+r(l-1)) < i <= r1+..+rl} and ++ \spad{(c1+..+c(l-1)) < i <= c1+..+cl}, ++ \spad{m.i.j} = 0 otherwise. coerce: Col -> % ++ \spad{coerce(col)} converts the column col to a column matrix. transpose: Row -> % ++ \spad{transpose(r)} converts the row r to a row matrix. --% Creation of new matrices from old transpose: % -> % ++ \spad{transpose(m)} returns the transpose of the matrix m. squareTop: % -> % ++ \spad{squareTop(m)} returns an n-by-n matrix consisting of the first ++ n rows of the m-by-n matrix m. Error: if ++ \spad{m < n}. horizConcat: (%,%) -> % ++ \spad{horizConcat(x,y)} horizontally concatenates two matrices with ++ an equal number of rows. The entries of y appear to the right ++ of the entries of x. Error: if the matrices ++ do not have the same number of rows. vertConcat: (%,%) -> % ++ \spad{vertConcat(x,y)} vertically concatenates two matrices with an ++ equal number of columns. The entries of y appear below ++ of the entries of x. Error: if the matrices ++ do not have the same number of columns. --% Part extractions/assignments listOfLists: % -> List List R ++ \spad{listOfLists(m)} returns the rows of the matrix m as a list ++ of lists. elt: (%,List Integer,List Integer) -> % ++ \spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting ++ of elements of x, where \spad{m = # rowList} and \spad{n = # colList}. ++ If \spad{rowList = [i<1>,i<2>,...,i<m>]} and \spad{colList = ++ [j<1>,j<2>,...,j<n>]}, then the \spad{(k,l)}th entry of ++ \spad{elt(x,rowList,colList)} is \spad{x(i<k>,j<l>)}. setelt: (%,List Integer,List Integer, %) -> % ++ \spad{setelt(x,rowList,colList,y)} destructively alters the matrix x. ++ If y is \spad{m}-by-\spad{n}, \spad{rowList = [i<1>,i<2>,...,i<m>]} ++ and \spad{colList = [j<1>,j<2>,...,j<n>]}, then \spad{x(i<k>,j<l>)} ++ is set to \spad{y(k,l)} for \spad{k = 1,...,m} and \spad{l = 1,...,n}. swapRows!: (%,Integer,Integer) -> % ++ \spad{swapRows!(m,i,j)} interchanges the \spad{i}th and \spad{j}th ++ rows of m. This destructively alters the matrix. swapColumns!: (%,Integer,Integer) -> % ++ \spad{swapColumns!(m,i,j)} interchanges the \spad{i}th and \spad{j}th ++ columns of m. This destructively alters the matrix. subMatrix: (%,Integer,Integer,Integer,Integer) -> % ++ \spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix ++ \spad{[x(i,j)]} where the index i ranges from \spad{i1} to \spad{i2} ++ and the index j ranges from \spad{j1} to \spad{j2}. setsubMatrix!: (%,Integer,Integer,%) -> % ++ \spad{setsubMatrix(x,i1,j1,y)} destructively alters the ++ matrix x. Here \spad{x(i,j)} is set to \spad{y(i-i1+1,j-j1+1)} for ++ \spad{i = i1,...,i1-1+nrows y} and \spad{j = j1,...,j1-1+ncols y}. --% Arithmetic +: (%,%) -> % ++ \spad{x + y} is the sum of the matrices x and y. ++ Error: if the dimensions are incompatible. -: (%,%) -> % ++ \spad{x - y} is the difference of the matrices x and y. ++ Error: if the dimensions are incompatible. -: % -> % ++ \spad{-x} returns the negative of the matrix x. *: (%,%) -> % ++ \spad{x * y} is the product of the matrices x and y. ++ Error: if the dimensions are incompatible. *: (R,%) -> % ++ \spad{r*x} is the left scalar multiple of the scalar r and the ++ matrix x. *: (%,R) -> % ++ \spad{x * r} is the right scalar multiple of the scalar r and the ++ matrix x. *: (Integer,%) -> % ++ \spad{n * x} is an integer multiple. *: (%,Col) -> Col ++ \spad{x * c} is the product of the matrix x and the column vector c. ++ Error: if the dimensions are incompatible. *: (Row,%) -> Row ++ \spad{r * x} is the product of the row vector r and the matrix x. ++ Error: if the dimensions are incompatible. **: (%,NonNegativeInteger) -> % ++ \spad{x ** n} computes a non-negative integral power of the matrix x. ++ Error: if the matrix is not square. if R has IntegralDomain then exquo: (%,R) -> Union(%,"failed") ++ \spad{exquo(m,r)} computes the exact quotient of the elements ++ of m by r, returning \axiom{"failed"} if this is not possible. if R has Field then /: (%,R) -> % ++ \spad{m/r} divides the elements of m by r. Error: if \spad{r = 0}. --% Linear algebra if R has EuclideanDomain then rowEchelon: % -> % ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. if R has IntegralDomain then rank: % -> NonNegativeInteger ++ \spad{rank(m)} returns the rank of the matrix m. nullity: % -> NonNegativeInteger ++ \spad{nullity(m)} returns the nullity of the matrix m. This is ++ the dimension of the null space of the matrix m. nullSpace: % -> List Col ++ \spad{nullSpace(m)} returns a basis for the null space of ++ the matrix m. if R has commutative("*") then determinant: % -> R ++ \spad{determinant(m)} returns the determinant of the matrix m. ++ Error: if the matrix is not square. minordet: % -> R ++ \spad{minordet(m)} computes the determinant of the matrix m using ++ minors. Error: if the matrix is not square. if R has Field then inverse: % -> Union(%,"failed") ++ \spad{inverse(m)} returns the inverse of the matrix m. ++ If the matrix is not invertible, "failed" is returned. ++ Error: if the matrix is not square. **: (%,Integer) -> % ++ \spad{m**n} computes an integral power of the matrix m. ++ Error: if matrix is not square or if the matrix ++ is square but not invertible. add minr ==> minRowIndex maxr ==> maxRowIndex minc ==> minColIndex maxc ==> maxColIndex mini ==> minIndex maxi ==> maxIndex --% Predicates square? x == nrows x = ncols x diagonal? x == not square? x => false for i in minr x .. maxr x repeat for j in minc x .. maxc x | (j - minc x) ~= (i - minr x) repeat not zero? qelt(x, i, j) => return false true symmetric? x == (nRows := nrows x) ~= ncols x => false mr := minRowIndex x; mc := minColIndex x for i in 0..(nRows - 1) repeat for j in (i + 1)..(nRows - 1) repeat qelt(x,mr + i,mc + j) ~= qelt(x,mr + j,mc + i) => return false true antisymmetric? x == (nRows := nrows x) ~= ncols x => false mr := minRowIndex x; mc := minColIndex x for i in 0..(nRows - 1) repeat for j in i..(nRows - 1) repeat qelt(x,mr + i,mc + j) ~= -qelt(x,mr + j,mc + i) => return false true --% Creation of matrices zero(rows,cols) == new(rows,cols,0) matrix(l: List List R) == null l => new(0,0,0) -- error check: this is a top level function rows : NonNegativeInteger := 1; cols := # first l cols = 0 => error "matrices with zero columns are not supported" for ll in rest l repeat cols ~= # ll => error "matrix: rows of different lengths" rows := rows + 1 ans := new(rows,cols,0) for i in minr(ans)..maxr(ans) for ll in l repeat for j in minc(ans)..maxc(ans) for r in ll repeat qsetelt!(ans,i,j,r) ans matrix(n,m,f) == mat := new(n,m,0) for i in minr mat..maxr mat repeat for j in minc mat..maxc mat repeat qsetelt!(mat,i,j,f(i,j)) mat scalarMatrix(n,r) == ans := zero(n,n) for i in minr(ans)..maxr(ans) for j in minc(ans)..maxc(ans) repeat qsetelt!(ans,i,j,r) ans diagonalMatrix(l: List R) == n := #l; ans := zero(n,n) for i in minr(ans)..maxr(ans) for j in minc(ans)..maxc(ans) _ for r in l repeat qsetelt!(ans,i,j,r) ans diagonalMatrix(list: List %) == rows : NonNegativeInteger := 0 cols : NonNegativeInteger := 0 for mat in list repeat rows := rows + nrows mat cols := cols + ncols mat ans := zero(rows,cols) loR := minr ans; loC := minc ans for mat in list repeat hiR := loR + nrows(mat) - 1; hiC := loC + nrows(mat) - 1 for i in loR..hiR for k in minr(mat)..maxr(mat) repeat for j in loC..hiC for l in minc(mat)..maxc(mat) repeat qsetelt!(ans,i,j,qelt(mat,k,l)) loR := hiR + 1; loC := hiC + 1 ans coerce(v:Col) == x := new(#v,1,0) one := minc(x) for i in minr(x)..maxr(x) for k in mini(v)..maxi(v) repeat qsetelt!(x,i,one,qelt(v,k)) x transpose(v:Row) == x := new(1,#v,0) one := minr(x) for j in minc(x)..maxc(x) for k in mini(v)..maxi(v) repeat qsetelt!(x,one,j,qelt(v,k)) x transpose(x:%) == ans := new(ncols x,nrows x,0) for i in minr(ans)..maxr(ans) repeat for j in minc(ans)..maxc(ans) repeat qsetelt!(ans,i,j,qelt(x,j,i)) ans squareTop x == nrows x < (cols := ncols x) => error "squareTop: number of columns exceeds number of rows" ans := new(cols,cols,0) for i in minr(x)..(minr(x) + cols - 1) repeat for j in minc(x)..maxc(x) repeat qsetelt!(ans,i,j,qelt(x,i,j)) ans horizConcat(x,y) == (rows := nrows x) ~= nrows y => error "HConcat: matrices must have same number of rows" ans := new(rows,(cols := ncols x) + ncols y,0) for i in minr(x)..maxr(x) repeat for j in minc(x)..maxc(x) repeat qsetelt!(ans,i,j,qelt(x,i,j)) for i in minr(y)..maxr(y) repeat for j in minc(y)..maxc(y) repeat qsetelt!(ans,i,j + cols,qelt(y,i,j)) ans vertConcat(x,y) == (cols := ncols x) ~= ncols y => error "HConcat: matrices must have same number of columns" ans := new((rows := nrows x) + nrows y,cols,0) for i in minr(x)..maxr(x) repeat for j in minc(x)..maxc(x) repeat qsetelt!(ans,i,j,qelt(x,i,j)) for i in minr(y)..maxr(y) repeat for j in minc(y)..maxc(y) repeat qsetelt!(ans,i + rows,j,qelt(y,i,j)) ans --% Part extraction/assignment listOfLists x == ll : List List R := nil() for i in maxr(x)..minr(x) by -1 repeat l : List R := nil() for j in maxc(x)..minc(x) by -1 repeat l := cons(qelt(x,i,j),l) ll := cons(l,ll) ll swapRows!(x,i1,i2) == (i1 < minr(x)) or (i1 > maxr(x)) or (i2 < minr(x)) or _ (i2 > maxr(x)) => error "swapRows!: index out of range" i1 = i2 => x for j in minc(x)..maxc(x) repeat r := qelt(x,i1,j) qsetelt!(x,i1,j,qelt(x,i2,j)) qsetelt!(x,i2,j,r) x swapColumns!(x,j1,j2) == (j1 < minc(x)) or (j1 > maxc(x)) or (j2 < minc(x)) or _ (j2 > maxc(x)) => error "swapColumns!: index out of range" j1 = j2 => x for i in minr(x)..maxr(x) repeat r := qelt(x,i,j1) qsetelt!(x,i,j1,qelt(x,i,j2)) qsetelt!(x,i,j2,r) x elt(x:%,rowList:List Integer,colList:List Integer) == for ei in rowList repeat (ei < minr(x)) or (ei > maxr(x)) => error "elt: index out of range" for ej in colList repeat (ej < minc(x)) or (ej > maxc(x)) => error "elt: index out of range" y := new(# rowList,# colList,0) for ei in rowList for i in minr(y)..maxr(y) repeat for ej in colList for j in minc(y)..maxc(y) repeat qsetelt!(y,i,j,qelt(x,ei,ej)) y setelt(x:%,rowList:List Integer,colList:List Integer,y:%) == for ei in rowList repeat (ei < minr(x)) or (ei > maxr(x)) => error "setelt: index out of range" for ej in colList repeat (ej < minc(x)) or (ej > maxc(x)) => error "setelt: index out of range" ((# rowList) ~= (nrows y)) or ((# colList) ~= (ncols y)) => error "setelt: matrix has bad dimensions" for ei in rowList for i in minr(y)..maxr(y) repeat for ej in colList for j in minc(y)..maxc(y) repeat qsetelt!(x,ei,ej,qelt(y,i,j)) y subMatrix(x,i1,i2,j1,j2) == (i2 < i1) => error "subMatrix: bad row indices" (j2 < j1) => error "subMatrix: bad column indices" (i1 < minr(x)) or (i2 > maxr(x)) => error "subMatrix: index out of range" (j1 < minc(x)) or (j2 > maxc(x)) => error "subMatrix: index out of range" rows := (i2 - i1 + 1) pretend NonNegativeInteger cols := (j2 - j1 + 1) pretend NonNegativeInteger y := new(rows,cols,0) for i in minr(y)..maxr(y) for k in i1..i2 repeat for j in minc(y)..maxc(y) for l in j1..j2 repeat qsetelt!(y,i,j,qelt(x,k,l)) y setsubMatrix!(x,i1,j1,y) == i2 := i1 + nrows(y) -1 j2 := j1 + ncols(y) -1 (i1 < minr(x)) or (i2 > maxr(x)) => error "setsubMatrix!: inserted matrix too big, use subMatrix to restrict it" (j1 < minc(x)) or (j2 > maxc(x)) => error "setsubMatrix!: inserted matrix too big, use subMatrix to restrict it" for i in minr(y)..maxr(y) for k in i1..i2 repeat for j in minc(y)..maxc(y) for l in j1..j2 repeat qsetelt!(x,k,l,qelt(y,i,j)) x --% Arithmetic x + y == ((r := nrows x) ~= nrows y) or ((c := ncols x) ~= ncols y) => error "can't add matrices of different dimensions" ans := new(r,c,0) for i in minr(x)..maxr(x) repeat for j in minc(x)..maxc(x) repeat qsetelt!(ans,i,j,qelt(x,i,j) + qelt(y,i,j)) ans x - y == ((r := nrows x) ~= nrows y) or ((c := ncols x) ~= ncols y) => error "can't subtract matrices of different dimensions" ans := new(r,c,0) for i in minr(x)..maxr(x) repeat for j in minc(x)..maxc(x) repeat qsetelt!(ans,i,j,qelt(x,i,j) - qelt(y,i,j)) ans - x == map(- #1,x) a:R * x:% == map(a * #1,x) x:% * a:R == map(#1 * a,x) m:Integer * x:% == map(m * #1,x) x:% * y:% == (ncols x ~= nrows y) => error "can't multiply matrices of incompatible dimensions" ans := new(nrows x,ncols y,0) for i in minr(x)..maxr(x) repeat for j in minc(y)..maxc(y) repeat entry := sum : R := 0 for k in minr(y)..maxr(y) for l in minc(x)..maxc(x) repeat sum := sum + qelt(x,i,l) * qelt(y,k,j) sum qsetelt!(ans,i,j,entry) ans positivePower:(%,Integer) -> % positivePower(x,n) == one? n => x odd? n => x * positivePower(x,n - 1) y := positivePower(x,n quo 2) y * y x:% ** n:NonNegativeInteger == not((nn:= nrows x) = ncols x) => error "**: matrix must be square" zero? n => scalarMatrix(nn,1) positivePower(x,n) --if R has ConvertibleTo InputForm then --convert(x:%):InputForm == --convert [convert('matrix)@InputForm, --convert listOfLists x]$List(InputForm) if Col has shallowlyMutable then x:% * v:Col == ncols(x) ~= #v => error "can't multiply matrix A and vector v if #cols A ~= #v" w : Col := new(nrows x,0) for i in minr(x)..maxr(x) for k in mini(w)..maxi(w) repeat w.k := sum : R := 0 for j in minc(x)..maxc(x) for l in mini(v)..maxi(v) repeat sum := sum + qelt(x,i,j) * v(l) sum w if Row has shallowlyMutable then v:Row * x:% == nrows(x) ~= #v => error "can't multiply vector v and matrix A if #rows A ~= #v" w : Row := new(ncols x,0) for j in minc(x)..maxc(x) for k in mini(w)..maxi(w) repeat w.k := sum : R := 0 for i in minr(x)..maxr(x) for l in mini(v)..maxi(v) repeat sum := sum + qelt(x,i,j) * v(l) sum w if R has IntegralDomain then x exquo a == ans := new(nrows x,ncols x,0) for i in minr(x)..maxr(x) repeat for j in minc(x)..maxc(x) repeat entry := (r := (qelt(x,i,j) exquo a)) case "failed" => return "failed" r :: R qsetelt!(ans,i,j,entry) ans if R has Field then x / r == map(#1 / r,x) x:% ** n:Integer == not((nn:= nrows x) = ncols x) => error "**: matrix must be square" zero? n => scalarMatrix(nn,1) positive? n => positivePower(x,n) (xInv := inverse x) case "failed" => error "**: matrix must be invertible" positivePower(xInv :: %,-n) @ \section{category RMATCAT RectangularMatrixCategory} <<category RMATCAT RectangularMatrixCategory>>= )abbrev category RMATCAT RectangularMatrixCategory ++ Authors: Grabmeier, Gschnitzer, Williamson ++ Date Created: 1987 ++ Date Last Updated: July 1990 ++ Basic Operations: ++ Related Domains: RectangularMatrix(m,n,R) ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: ++ \spadtype{RectangularMatrixCategory} is a category of matrices of fixed ++ dimensions. The dimensions of the matrix will be parameters of the ++ domain. Domains in this category will be R-modules and will be ++ non-mutable. RectangularMatrixCategory(m,n,R,Row,Col): Category == Definition where m,n : NonNegativeInteger R : Ring Row : DirectProductCategory(n,R) Col : DirectProductCategory(m,R) Definition ==> Join(BiModule(R,R),HomogeneousAggregate(R)) with finiteAggregate ++ matrices are finite if R has CommutativeRing then Module(R) --% Matrix creation matrix: List List R -> % ++ \spad{matrix(l)} converts the list of lists l to a matrix, where the ++ list of lists is viewed as a list of the rows of the matrix. --% Predicates square? : % -> Boolean ++ \spad{square?(m)} returns true if m is a square matrix (i.e. if m ++ has the same number of rows as columns) and false otherwise. diagonal?: % -> Boolean ++ \spad{diagonal?(m)} returns true if the matrix m is square and diagonal ++ (i.e. all entries of m not on the diagonal are zero) and false ++ otherwise. symmetric?: % -> Boolean ++ \spad{symmetric?(m)} returns true if the matrix m is square and ++ symmetric (i.e. \spad{m[i,j] = m[j,i]} for all \spad{i} and j) and ++ false otherwise. antisymmetric?: % -> Boolean ++ \spad{antisymmetric?(m)} returns true if the matrix m is square and ++ antisymmetric (i.e. \spad{m[i,j] = -m[j,i]} for all \spad{i} and j) ++ and false otherwise. --% Size inquiries minRowIndex : % -> Integer ++ \spad{minRowIndex(m)} returns the index of the 'first' row of the ++ matrix m. maxRowIndex : % -> Integer ++ \spad{maxRowIndex(m)} returns the index of the 'last' row of the ++ matrix m. minColIndex : % -> Integer ++ \spad{minColIndex(m)} returns the index of the 'first' column of the ++ matrix m. maxColIndex : % -> Integer ++ \spad{maxColIndex(m)} returns the index of the 'last' column of the ++ matrix m. nrows : % -> NonNegativeInteger ++ \spad{nrows(m)} returns the number of rows in the matrix m. ncols : % -> NonNegativeInteger ++ \spad{ncols(m)} returns the number of columns in the matrix m. --% Part extractions listOfLists: % -> List List R ++ \spad{listOfLists(m)} returns the rows of the matrix m as a list ++ of lists. elt: (%,Integer,Integer) -> R ++ \spad{elt(m,i,j)} returns the element in the \spad{i}th row and ++ \spad{j}th column of the matrix m. ++ Error: if indices are outside the proper ++ ranges. qelt: (%,Integer,Integer) -> R ++ \spad{qelt(m,i,j)} returns the element in the \spad{i}th row and ++ \spad{j}th column of ++ the matrix m. Note: there is NO error check to determine if indices are ++ in the proper ranges. elt: (%,Integer,Integer,R) -> R ++ \spad{elt(m,i,j,r)} returns the element in the \spad{i}th row and ++ \spad{j}th column of the matrix m, if m has an \spad{i}th row and a ++ \spad{j}th column, and returns r otherwise. row: (%,Integer) -> Row ++ \spad{row(m,i)} returns the \spad{i}th row of the matrix m. ++ Error: if the index is outside the proper range. column: (%,Integer) -> Col ++ \spad{column(m,j)} returns the \spad{j}th column of the matrix m. ++ Error: if the index outside the proper range. --% Map and Zip map: (R -> R,%) -> % ++ \spad{map(f,a)} returns b, where \spad{b(i,j) = a(i,j)} for all i, j. map:((R,R) -> R,%,%) -> % ++ \spad{map(f,a,b)} returns c, where c is such that ++ \spad{c(i,j) = f(a(i,j),b(i,j))} for all \spad{i}, j. --% Arithmetic if R has IntegralDomain then exquo: (%,R) -> Union(%,"failed") ++ \spad{exquo(m,r)} computes the exact quotient of the elements ++ of m by r, returning \axiom{"failed"} if this is not possible. if R has Field then /: (%,R) -> % ++ \spad{m/r} divides the elements of m by r. Error: if \spad{r = 0}. --% Linear algebra if R has EuclideanDomain then rowEchelon: % -> % ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. if R has IntegralDomain then rank: % -> NonNegativeInteger ++ \spad{rank(m)} returns the rank of the matrix m. nullity: % -> NonNegativeInteger ++ \spad{nullity(m)} returns the nullity of the matrix m. This is ++ the dimension of the null space of the matrix m. nullSpace: % -> List Col ++ \spad{nullSpace(m)}+ returns a basis for the null space of ++ the matrix m. add nrows x == m ncols x == n square? x == m = n diagonal? x == not square? x => false for i in minRowIndex x .. maxRowIndex x repeat for j in minColIndex x .. maxColIndex x | (j - minColIndex x) ~= (i - minRowIndex x) repeat not zero? qelt(x, i, j) => return false true symmetric? x == m ~= n => false mr := minRowIndex x; mc := minColIndex x for i in 0..(n - 1) repeat for j in (i + 1)..(n - 1) repeat qelt(x,mr + i,mc + j) ~= qelt(x,mr + j,mc + i) => return false true antisymmetric? x == m ~= n => false mr := minRowIndex x; mc := minColIndex x for i in 0..(n - 1) repeat for j in i..(n - 1) repeat qelt(x,mr + i,mc + j) ~= -qelt(x,mr + j,mc + i) => return false true @ \section{category SMATCAT SquareMatrixCategory} <<category SMATCAT SquareMatrixCategory>>= )abbrev category SMATCAT SquareMatrixCategory ++ Authors: Grabmeier, Gschnitzer, Williamson ++ Date Created: 1987 ++ Date Last Updated: July 1990 ++ Basic Operations: ++ Related Domains: SquareMatrix(ndim,R) ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: ++ \spadtype{SquareMatrixCategory} is a general square matrix category which ++ allows different representations and indexing schemes. Rows and ++ columns may be extracted with rows returned as objects of ++ type Row and colums returned as objects of type Col. SquareMatrixCategory(ndim,R,Row,Col): Category == Definition where ndim : NonNegativeInteger R : Ring Row : DirectProductCategory(ndim,R) Col : DirectProductCategory(ndim,R) I ==> Integer Definition ==> Join(DifferentialExtension R, BiModule(R, R),_ RectangularMatrixCategory(ndim,ndim,R,Row,Col),_ FullyRetractableTo R,_ FullyLinearlyExplicitRingOver R) with if R has CommutativeRing then Module(R) scalarMatrix: R -> % ++ \spad{scalarMatrix(r)} returns an n-by-n matrix with r's on the ++ diagonal and zeroes elsewhere. diagonalMatrix: List R -> % ++ \spad{diagonalMatrix(l)} returns a diagonal matrix with the elements ++ of l on the diagonal. diagonal: % -> Row ++ \spad{diagonal(m)} returns a row consisting of the elements on the ++ diagonal of the matrix m. trace: % -> R ++ \spad{trace(m)} returns the trace of the matrix m. this is the sum ++ of the elements on the diagonal of the matrix m. diagonalProduct: % -> R ++ \spad{diagonalProduct(m)} returns the product of the elements on the ++ diagonal of the matrix m. *: (%,Col) -> Col ++ \spad{x * c} is the product of the matrix x and the column vector c. ++ Error: if the dimensions are incompatible. *: (Row,%) -> Row ++ \spad{r * x} is the product of the row vector r and the matrix x. ++ Error: if the dimensions are incompatible. --% Linear algebra if R has commutative("*") then Algebra R determinant: % -> R ++ \spad{determinant(m)} returns the determinant of the matrix m. minordet: % -> R ++ \spad{minordet(m)} computes the determinant of the matrix m ++ using minors. if R has Field then inverse: % -> Union(%,"failed") ++ \spad{inverse(m)} returns the inverse of the matrix m, if that ++ matrix is invertible and returns "failed" otherwise. **: (%,Integer) -> % ++ \spad{m**n} computes an integral power of the matrix m. ++ Error: if the matrix is not invertible. add minr ==> minRowIndex maxr ==> maxRowIndex minc ==> minColIndex maxc ==> maxColIndex mini ==> minIndex maxi ==> maxIndex positivePower:(%,Integer) -> % positivePower(x,n) == one? n => x odd? n => x * positivePower(x,n - 1) y := positivePower(x,n quo 2) y * y x:% ** n:NonNegativeInteger == zero? n => scalarMatrix 1 positivePower(x,n) coerce(r:R) == scalarMatrix r equation2R: Vector % -> Matrix R differentiate(x:%,d:R -> R) == map(d,x) diagonal x == v:Vector(R) := new(ndim,0) for i in minr x .. maxr x for j in minc x .. maxc x for k in minIndex v .. maxIndex v repeat qsetelt!(v, k, qelt(x, i, j)) directProduct v retract(x:%):R == diagonal? x => retract diagonal x error "Not retractable" retractIfCan(x:%):Union(R, "failed") == diagonal? x => retractIfCan diagonal x "failed" equation2R v == ans:Matrix(Col) := new(ndim,#v,0) for i in minr ans .. maxr ans repeat for j in minc ans .. maxc ans repeat qsetelt!(ans, i, j, column(qelt(v, j), i)) reducedSystem ans reducedSystem(x:Matrix %):Matrix(R) == empty? x => new(0,0,0) reduce(vertConcat, [equation2R row(x, i) for i in minr x .. maxr x])$List(Matrix R) reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix R, vec:Vector R) == vh:Vector(R) := empty? v => new(0,0) rh := reducedSystem(v::Matrix %)@Matrix(R) column(rh, minColIndex rh) [reducedSystem(m)@Matrix(R), vh] trace x == tr : R := 0 for i in minr(x)..maxr(x) for j in minc(x)..maxc(x) repeat tr := tr + x(i,j) tr diagonalProduct x == pr : R := 1 for i in minr(x)..maxr(x) for j in minc(x)..maxc(x) repeat pr := pr * x(i,j) pr if R has Field then x:% ** n:Integer == zero? n => scalarMatrix 1 positive? n => positivePower(x,n) (xInv := inverse x) case "failed" => error "**: matrix must be invertible" positivePower(xInv :: %,-n) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category MATCAT MatrixCategory>> <<category RMATCAT RectangularMatrixCategory>> <<category SMATCAT SquareMatrixCategory>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}