\documentclass{article} \usepackage{open-axiom} \title{src/algebra logic.spad} \author{Gabriel Dos~Reis} \section{category LOGIC Logic} <<category LOGIC Logic>>= )abbrev category LOGIC Logic ++ Author: ++ Date Created: ++ Date Last Changed: May 27, 2009 ++ Basic Operations: ~, /\, \/ ++ Related Constructors: ++ Keywords: boolean ++ Description: ++ `Logic' provides the basic operations for lattices, ++ e.g., boolean algebra. Logic: Category == Type with ~: % -> % ++ \spad{~x} returns the logical complement of \spad{x}. /\: (%, %) -> % ++ \spad {x/\y} returns the logical `meet', e.g. conjunction, of ++ \spad{x} and \spad{y}. \/: (%, %) -> % ++ \spad{x\/y} returns the logical `join', e.g. disjunction, or ++ \spad{x} and \spad{y}. add x \/ y == ~(~x /\ ~y) @ \section{Categories an domains for logic} <<category BOOLE BooleanLogic>>= )abbrev category BOOLE BooleanLogic ++ Author: Gabriel Dos Reis ++ Date Created: April 04, 2010 ++ Date Last Modified: April 04, 2010 ++ Description: ++ This is the category of Boolean logic structures. BooleanLogic(): Category == Logic with not: % -> % ++ \spad{not x} returns the complement or negation of \spad{x}. and: (%,%) -> % ++ \spad{x and y} returns the conjunction of \spad{x} and \spad{y}. or: (%,%) -> % ++ \spad{x or y} returns the disjunction of \spad{x} and \spad{y}. add not x == ~ x x and y == x /\ y x or y == x \/ y @ <<category PROPLOG PropositionalLogic>>= )abbrev category PROPLOG PropositionalLogic ++ Author: Gabriel Dos Reis ++ Date Created: Januray 14, 2008 ++ Date Last Modified: May 27, 2009 ++ Description: This category declares the connectives of ++ Propositional Logic. PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with true: % ++ \spad{true} is a logical constant. false: % ++ \spad{false} is a logical constant. implies: (%,%) -> % ++ \spad{implies(p,q)} returns the logical implication of `q' by `p'. equiv: (%,%) -> % ++ \spad{equiv(p,q)} returns the logical equivalence of `p', `q'. @ \section{domain PROPFRML PropositionalFormula} <<domain PROPFRML PropositionalFormula>>= )set mess autoload on )abbrev domain PROPFRML PropositionalFormula ++ Author: Gabriel Dos Reis ++ Date Created: Januray 14, 2008 ++ Date Last Modified: February, 2011 ++ Description: This domain implements propositional formula build ++ over a term domain, that itself belongs to PropositionalLogic PropositionalFormula(T: SetCategory): Public == Private where Public == Join(PropositionalLogic, CoercibleFrom T) with isAtom : % -> Maybe T ++ \spad{isAtom f} returns a value \spad{v} such that ++ \spad{v case T} holds if the formula \spad{f} is a term. isNot : % -> Maybe % ++ \spad{isNot f} returns a value \spad{v} such that ++ \spad{v case %} holds if the formula \spad{f} is a negation. isAnd : % -> Maybe Pair(%,%) ++ \spad{isAnd f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is a conjunction formula. isOr : % -> Maybe Pair(%,%) ++ \spad{isOr f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is a disjunction formula. isImplies : % -> Maybe Pair(%,%) ++ \spad{isImplies f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is an implication formula. isEquiv : % -> Maybe Pair(%,%) ++ \spad{isEquiv f} returns a value \spad{v} such that ++ \spad{v case Pair(%,%)} holds if the formula \spad{f} ++ is an equivalence formula. conjunction: (%,%) -> % ++ \spad{conjunction(p,q)} returns a formula denoting the ++ conjunction of \spad{p} and \spad{q}. disjunction: (%,%) -> % ++ \spad{disjunction(p,q)} returns a formula denoting the ++ disjunction of \spad{p} and \spad{q}. Private == add Rep == Union(T, Kernel %) import Kernel % import BasicOperator import KernelFunctions2(Identifier,%) import List % -- Local names for proposition logical operators macro FALSE == '%false macro TRUE == '%true macro NOT == '%not macro AND == '%and macro OR == '%or macro IMP == '%implies macro EQV == '%equiv -- Return the nesting level of a formula level(f: %): NonNegativeInteger == f' := rep f f' case T => 0 height f' -- A term is a formula coerce(t: T): % == per t false == per constantKernel FALSE true == per constantKernel TRUE ~ p == per kernel(operator(NOT, 1::Arity), [p], 1 + level p) conjunction(p,q) == per kernel(operator(AND, 2), [p, q], 1 + max(level p, level q)) p /\ q == conjunction(p,q) disjunction(p,q) == per kernel(operator(OR, 2), [p, q], 1 + max(level p, level q)) p \/ q == disjunction(p,q) implies(p,q) == per kernel(operator(IMP, 2), [p, q], 1 + max(level p, level q)) equiv(p,q) == per kernel(operator(EQV, 2), [p, q], 1 + max(level p, level q)) isAtom f == f' := rep f f' case T => just(f'@T) nothing isNot f == f' := rep f f' case Kernel(%) and is?(f', NOT) => just(first argument f') nothing isBinaryOperator(f: Kernel %, op: Symbol): Maybe Pair(%, %) == not is?(f, op) => nothing args := argument f just pair(first args, second args) isAnd f == f' := rep f f' case Kernel % => isBinaryOperator(f', AND) nothing isOr f == f' := rep f f' case Kernel % => isBinaryOperator(f', OR) nothing isImplies f == f' := rep f f' case Kernel % => isBinaryOperator(f', IMP) nothing isEquiv f == f' := rep f f' case Kernel % => isBinaryOperator(f', EQV) nothing -- Unparsing grammar. -- -- Ideally, the following syntax would the external form -- Formula: -- EquivFormula -- -- EquivFormula: -- ImpliesFormula -- ImpliesFormula <=> EquivFormula -- -- ImpliesFormula: -- OrFormula -- OrFormula => ImpliesFormula -- -- OrFormula: -- AndFormula -- AndFormula or OrFormula -- -- AndFormula -- NotFormula -- NotFormula and AndFormula -- -- NotFormula: -- PrimaryFormula -- not NotFormula -- -- PrimaryFormula: -- Term -- ( Formula ) -- -- Note: Since the token '=>' already means a construct different -- from what we would like to have as a notation for -- propositional logic, we will output the formula `p => q' -- as implies(p,q), which looks like a function call. -- Similarly, we do not have the token `<=>' for logical -- equivalence; so we unparser `p <=> q' as equiv(p,q). -- -- So, we modify the nonterminal PrimaryFormula to read -- PrimaryFormula: -- Term -- implies(Formula, Formula) -- equiv(Formula, Formula) formula: % -> OutputForm coerce(p: %): OutputForm == formula p primaryFormula(p: %): OutputForm == p' := rep p p' case T => p'@T::OutputForm case constantIfCan p' is c@Identifier => c::OutputForm otherwise => is?(p', IMP) or is?(p', EQV) => args := argument p' elt(operator(p')::OutputForm, [formula first args, formula second args])$OutputForm paren(formula p)$OutputForm notFormula(p: %): OutputForm == case isNot p is f@% => elt(outputForm 'not, [notFormula f])$OutputForm otherwise => primaryFormula p andFormula(f: %): OutputForm == case isAnd f is p@Pair(%,%) => -- ??? idealy, we should be using `and$OutputForm' but -- ??? a bug in the compiler currently prevents that. infix(outputForm 'and, notFormula first p, andFormula second p)$OutputForm otherwise => notFormula f orFormula(f: %): OutputForm == case isOr f is p@Pair(%,%) => -- ??? idealy, we should be using `or$OutputForm' but -- ??? a bug in the compiler currently prevents that. infix(outputForm 'or, andFormula first p, orFormula second p)$OutputForm otherwise => andFormula f formula f == -- Note: this should be equivFormula, but see the explanation above. orFormula f @ <<package PROPFUN1 PropositionalFormulaFunctions1>>= )abbrev package PROPFUN1 PropositionalFormulaFunctions1 ++ Author: Gabriel Dos Reis ++ Date Created: April 03, 2010 ++ Date Last Modified: April 03, 2010 ++ Description: ++ This package collects unary functions operating on propositional ++ formulae. PropositionalFormulaFunctions1(T): Public == Private where T: SetCategory Public == Type with dual: PropositionalFormula T -> PropositionalFormula T ++ \spad{dual f} returns the dual of the proposition \spad{f}. atoms: PropositionalFormula T -> Set T ++ \spad{atoms f} ++ returns the set of atoms appearing in ++ the formula \spad{f}. simplify: PropositionalFormula T -> PropositionalFormula T ++ \spad{simplify f} returns a formula logically equivalent ++ to \spad{f} where obvious tautologies have been removed. Private == add macro F == PropositionalFormula T inline Pair(F,F) dual f == f = true$F => false$F f = false$F => true$F isAtom f case T => f (f1 := isNot f) case F => not dual f1 (f2 := isAnd f) case Pair(F,F) => disjunction(dual first f2, dual second f2) (f2 := isOr f) case Pair(F,F) => conjunction(dual first f2, dual second f2) error "formula contains `equiv' or `implies'" atoms f == (t := isAtom f) case T => { t } (f1 := isNot f) case F => atoms f1 (f2 := isAnd f) case Pair(F,F) => union(atoms first f2, atoms second f2) (f2 := isOr f) case Pair(F,F) => union(atoms first f2, atoms second f2) empty()$Set(T) -- one-step simplification helper function simplifyOneStep(f: F): F == (f1 := isNot f) case F => f1 = true$F => false$F f1 = false$F => true$F (f1' := isNot f1) case F => f1' -- assume classical logic f (f2 := isAnd f) case Pair(F,F) => first f2 = false$F or second f2 = false$F => false$F first f2 = true$F => second f2 second f2 = true$F => first f2 f (f2 := isOr f) case Pair(F,F) => first f2 = false$F => second f2 second f2 = false$F => first f2 first f2 = true$F or second f2 = true$F => true$F f (f2 := isImplies f) case Pair(F,F) => first f2 = false$F or second f2 = true$F => true$F first f2 = true$F => second f2 second f2 = false$F => not first f2 f (f2 := isEquiv f) case Pair(F,F) => first f2 = true$F => second f2 second f2 = true$F => first f2 first f2 = false$F => not second f2 second f2 = false$F => not first f2 f f simplify f == (f1 := isNot f) case F => simplifyOneStep(not simplify f1) (f2 := isAnd f) case Pair(F,F) => simplifyOneStep(conjunction(simplify first f2, simplify second f2)) (f2 := isOr f) case Pair(F,F) => simplifyOneStep(disjunction(simplify first f2, simplify second f2)) (f2 := isImplies f) case Pair(F,F) => simplifyOneStep(implies(simplify first f2, simplify second f2)) (f2 := isEquiv f) case Pair(F,F) => simplifyOneStep(equiv(simplify first f2, simplify second f2)) f @ <<package PROPFUN2 PropositionalFormulaFunctions2>>= )abbrev package PROPFUN2 PropositionalFormulaFunctions2 ++ Author: Gabriel Dos Reis ++ Date Created: April 03, 2010 ++ Date Last Modified: April 03, 2010 ++ Description: ++ This package collects binary functions operating on propositional ++ formulae. PropositionalFormulaFunctions2(S,T): Public == Private where S: SetCategory T: SetCategory Public == Type with map: (S -> T, PropositionalFormula S) -> PropositionalFormula T ++ \spad{map(f,x)} returns a propositional formula where ++ all atoms in \spad{x} have been replaced by the result ++ of applying the function \spad{f} to them. Private == add macro FS == PropositionalFormula S macro FT == PropositionalFormula T map(f,x) == x = true$FS => true$FT x = false$FS => false$FT (t := isAtom x) case S => f(t)::FT (f1 := isNot x) case FS => not map(f,f1) (f2 := isAnd x) case Pair(FS,FS) => conjunction(map(f,first f2), map(f,second f2)) (f2 := isOr x) case Pair(FS,FS) => disjunction(map(f,first f2), map(f,second f2)) (f2 := isImplies x) case Pair(FS,FS) => implies(map(f,first f2), map(f,second f2)) (f2 := isEquiv x) case Pair(FS,FS) => equiv(map(f,first f2), map(f,second f2)) error "invalid propositional formula" @ \section{Kleene's Three-Valued Logic} <<domain KTVLOGIC KleeneTrivalentLogic>>= )abbrev domain KTVLOGIC KleeneTrivalentLogic ++ Author: Gabriel Dos Reis ++ Date Created: September 20, 2008 ++ Date Last Modified: January 14, 2012 ++ Description: ++ This domain implements Kleene's 3-valued propositional logic. KleeneTrivalentLogic(): Public == Private where Public == Join(PropositionalLogic,Finite) with unknown: % ++ the indefinite `unknown' case: (%,[| false |]) -> Boolean ++ x case false holds if the value of `x' is `false' case: (%,[| unknown |]) -> Boolean ++ x case unknown holds if the value of `x' is `unknown' case: (%,[| true |]) -> Boolean ++ s case true holds if the value of `x' is `true'. Private == Maybe Boolean add false == per just(false@Boolean) unknown == per nothing true == per just(true@Boolean) x = y == rep x = rep y x case true == x = true@% x case false == x = false@% x case unknown == x = unknown not x == x case false => true x case unknown => unknown false x and y == x case false => false x case unknown => y case false => false unknown y x or y == x case false => y x case true => x y case true => y unknown implies(x,y) == x case false => true x case true => y y case true => true unknown equiv(x,y) == x case unknown => x x case true => y not y coerce(x: %): OutputForm == case rep x is y@Boolean => y::OutputForm otherwise => outputForm 'unknown size() == 3 index n == n > 3 => error "index: argument out of bound" n = 1 => false n = 2 => unknown true lookup x == x = false => 1 x = unknown => 2 3 @ \section{License} <<license>>= --Copyright (C) 1991-2002, The Numerical Algorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2013, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical Algorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category LOGIC Logic>> <<category BOOLE BooleanLogic>> <<category PROPLOG PropositionalLogic>> <<domain PROPFRML PropositionalFormula>> <<package PROPFUN1 PropositionalFormulaFunctions1>> <<package PROPFUN2 PropositionalFormulaFunctions2>> <<domain KTVLOGIC KleeneTrivalentLogic>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}