\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra lodop.spad} \author{Stephen M. Watt, Jean Della Dora} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category MLO MonogenicLinearOperator} <<category MLO MonogenicLinearOperator>>= )abbrev category MLO MonogenicLinearOperator ++ Author: Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: May 30, 1991 ++ Basic Operations: ++ Related Domains: NonCommutativeOperatorDivision ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: ++ This is the category of linear operator rings with one generator. ++ The generator is not named by the category but can always be ++ constructed as \spad{monomial(1,1)}. ++ ++ For convenience, call the generator \spad{G}. ++ Then each value is equal to ++ \spad{sum(a(i)*G**i, i = 0..n)} ++ for some unique \spad{n} and \spad{a(i)} in \spad{R}. ++ ++ Note that multiplication is not necessarily commutative. ++ In fact, if \spad{a} is in \spad{R}, it is quite normal ++ to have \spad{a*G \~= G*a}. MonogenicLinearOperator(R): Category == Defn where E ==> NonNegativeInteger R: Ring Defn == Join(Ring, BiModule(R,R)) with if R has CommutativeRing then Algebra(R) degree: $ -> E ++ degree(l) is \spad{n} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. minimumDegree: $ -> E ++ minimumDegree(l) is the smallest \spad{k} such that ++ \spad{a(k) \~= 0} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. leadingCoefficient: $ -> R ++ leadingCoefficient(l) is \spad{a(n)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. reductum: $ -> $ ++ reductum(l) is \spad{l - monomial(a(n),n)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. coefficient: ($, E) -> R ++ coefficient(l,k) is \spad{a(k)} if ++ \spad{l = sum(monomial(a(i),i), i = 0..n)}. monomial: (R, E) -> $ ++ monomial(c,k) produces c times the k-th power of ++ the generating operator, \spad{monomial(1,1)}. @ \section{domain OMLO OppositeMonogenicLinearOperator} <<domain OMLO OppositeMonogenicLinearOperator>>= )abbrev domain OMLO OppositeMonogenicLinearOperator ++ Author: Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: May 30, 1991 ++ Basic Operations: ++ Related Domains: MonogenicLinearOperator ++ Also See: ++ AMS Classifications: ++ Keywords: opposite ring ++ Examples: ++ References: ++ Description: ++ This constructor creates the \spadtype{MonogenicLinearOperator} domain ++ which is ``opposite'' in the ring sense to P. ++ That is, as sets \spad{P = $} but \spad{a * b} in \spad{$} is equal to ++ \spad{b * a} in P. OppositeMonogenicLinearOperator(P, R): OPRcat == OPRdef where P: MonogenicLinearOperator(R) R: Ring OPRcat == MonogenicLinearOperator(R) with if P has DifferentialRing then DifferentialRing op: P -> $ ++ op(p) creates a value in $ equal to p in P. po: $ -> P ++ po(q) creates a value in P equal to q in $. OPRdef == P add Rep == P op a == per a po x == rep x (x: %) * (y: %) == per(rep(y) * rep(x)) coerce(x): OutputForm == prefix(op::OutputForm, [coerce rep x]) @ \section{package NCODIV NonCommutativeOperatorDivision} <<package NCODIV NonCommutativeOperatorDivision>>= )abbrev package NCODIV NonCommutativeOperatorDivision ++ Author: Jean Della Dora, Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: May 30, 1991 ++ Basic Operations: ++ Related Domains: LinearOrdinaryDifferentialOperator ++ Also See: ++ AMS Classifications: ++ Keywords: gcd, lcm, division, non-commutative ++ Examples: ++ References: ++ Description: ++ This package provides a division and related operations for ++ \spadtype{MonogenicLinearOperator}s over a \spadtype{Field}. ++ Since the multiplication is in general non-commutative, ++ these operations all have left- and right-hand versions. ++ This package provides the operations based on left-division. -- [q,r] = leftDivide(a,b) means a=b*q+r NonCommutativeOperatorDivision(P, F): PDcat == PDdef where P: MonogenicLinearOperator(F) F: Field PDcat == with leftDivide: (P, P) -> Record(quotient: P, remainder: P) ++ leftDivide(a,b) returns the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ This process is called ``left division''. leftQuotient: (P, P) -> P ++ leftQuotient(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{q} is returned. leftRemainder: (P, P) -> P ++ leftRemainder(a,b) computes the pair \spad{[q,r]} such that ++ \spad{a = b*q + r} and the degree of \spad{r} is ++ less than the degree of \spad{b}. ++ The value \spad{r} is returned. leftExactQuotient:(P, P) -> Union(P, "failed") ++ leftExactQuotient(a,b) computes the value \spad{q}, if it exists, ++ such that \spad{a = b*q}. leftGcd: (P, P) -> P ++ leftGcd(a,b) computes the value \spad{g} of highest degree ++ such that ++ \spad{a = aa*g} ++ \spad{b = bb*g} ++ for some values \spad{aa} and \spad{bb}. ++ The value \spad{g} is computed using left-division. leftLcm: (P, P) -> P ++ leftLcm(a,b) computes the value \spad{m} of lowest degree ++ such that \spad{m = a*aa = b*bb} for some values ++ \spad{aa} and \spad{bb}. The value \spad{m} is ++ computed using left-division. PDdef == add leftDivide(a, b) == q: P := 0 r: P := a iv:F := inv leadingCoefficient b while degree r >= degree b and r ~= 0 repeat h := monomial(iv*leadingCoefficient r, (degree r - degree b)::NonNegativeInteger)$P r := r - b*h q := q + h [q,r] -- leftQuotient(a,b) is the quotient from left division, etc. leftQuotient(a,b) == leftDivide(a,b).quotient leftRemainder(a,b) == leftDivide(a,b).remainder leftExactQuotient(a,b) == qr := leftDivide(a,b) if qr.remainder = 0 then qr.quotient else "failed" -- l = leftGcd(a,b) means a = aa*l b = bb*l. Uses leftDivide. leftGcd(a,b) == a = 0 =>b b = 0 =>a while degree b > 0 repeat (a,b) := (b, leftRemainder(a,b)) if b=0 then a else b -- l = leftLcm(a,b) means l = a*aa l = b*bb Uses leftDivide. leftLcm(a,b) == a = 0 =>b b = 0 =>a b0 := b u := monomial(1,0)$P v := 0 while leadingCoefficient b ~= 0 repeat qr := leftDivide(a,b) (a, b) := (b, qr.remainder) (u, v) := (u*qr.quotient+v, u) b0*u @ \section{domain ODR OrdinaryDifferentialRing} <<domain ODR OrdinaryDifferentialRing>>= )abbrev domain ODR OrdinaryDifferentialRing ++ Author: Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: June 3, 1991 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: differential ring ++ Examples: ++ References: ++ Description: ++ This constructor produces an ordinary differential ring from ++ a partial differential ring by specifying a variable. OrdinaryDifferentialRing(Kernels,R,var): DRcategory == DRcapsule where Kernels:SetCategory R: PartialDifferentialRing(Kernels) var : Kernels DRcategory == Join(BiModule(%,%), DifferentialRing, HomotopicTo R) with if R has Field then Field DRcapsule == R add n: Integer Rep == R coerce(u: R): % == per u coerce(p: %): R == rep p differentiate p == per differentiate(rep p, var) if R has Field then p / q == per(rep(p) / rep(q)) p ** n == per(rep(p) ** n) inv(p) == per inv rep p @ \section{domain DPMO DirectProductModule} <<domain DPMO DirectProductModule>>= )abbrev domain DPMO DirectProductModule ++ Author: Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: June 4, 1991 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: equation ++ Examples: ++ References: ++ Description: ++ This constructor provides a direct product of R-modules ++ with an R-module view. DirectProductModule(n, R, S): DPcategory == DPcapsule where n: NonNegativeInteger R: Ring S: LeftModule(R) DPcategory == Join(DirectProductCategory(n,S), LeftModule(R)) -- with if S has Algebra(R) then Algebra(R) -- <above line leads to matchMmCond: unknown form of condition> DPcapsule == DirectProduct(n,S) add Rep := Vector(S) r:R * x:$ == [r * x.i for i in 1..n] @ \section{domain DPMM DirectProductMatrixModule} <<domain DPMM DirectProductMatrixModule>>= )abbrev domain DPMM DirectProductMatrixModule ++ Author: Stephen M. Watt ++ Date Created: 1986 ++ Date Last Updated: June 4, 1991 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: equation ++ Examples: ++ References: ++ Description: ++ This constructor provides a direct product type with a ++ left matrix-module view. DirectProductMatrixModule(n, R, M, S): DPcategory == DPcapsule where n: PositiveInteger R: Ring RowCol ==> DirectProduct(n,R) M: SquareMatrixCategory(n,R,RowCol,RowCol) S: LeftModule(R) DPcategory == Join(DirectProductCategory(n,S), LeftModule(R), LeftModule(M)) DPcapsule == DirectProduct(n, S) add Rep := Vector(S) r:R * x:$ == [r*x.i for i in 1..n] m:M * x:$ == [ +/[m(i,j)*x.j for j in 1..n] for i in 1..n] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category MLO MonogenicLinearOperator>> <<domain OMLO OppositeMonogenicLinearOperator>> <<package NCODIV NonCommutativeOperatorDivision>> <<domain ODR OrdinaryDifferentialRing>> <<domain DPMO DirectProductModule>> <<domain DPMM DirectProductMatrixModule>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}